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A B S T R A C T

Coupling multicomponent reactions (MCRs) with other polymerizations has excellent advantages in inducing
multifunctionality and syntheses of complex macromolecular structures. Herein, a straightforward combination
method using aqueous Passerini three-component reaction (P3CR(aq)) and conventional free radical polymeri-
zation (FRP) (termed as P3CR(aq)-Є-FRP) was applied using mild conditions. Firstly, an environmental-friendly
and efficient aqueous P3CR was applied to synthesize various carbamoyl methacrylate (CMA) monomers from
methacrylic acid, cyclohexyl isocyanide, and four different aldehydes with high yield (ca. 90 %) and purity. This
is plausibly prompted by the key factors of high cohesive energy density of water and facile isolation by the poor
solubility of CMAs in aqueous. Then, poly(carbamoyl methacrylate)s (PCMAs) were obtained via FRP with 2,2′-
azobis(isobutyronitrile) (AIBN) in dimethylformamide (DMF). Characterizations of both synthesized noble
monomers, polymers, solubilities in different solvents, and thermal properties, as well as the solution-state self-
assembly behaviors of the polymers by dynamic light scattering (DLS), scanning electron microscope (SEM), and
small-angle X-ray scattering (SAXS), including micellized particle sizes, critical micelle concentrations (CMCs),
and micelle morphology, were investigated. PCMAs can self-assemble into stable globular micellar nanoparticles
(ca. 170–310 nm) with low CMC values (1.6 × 10− 5–4.0 × 10− 9 mg/mL).

1. Introduction

Multicomponent reactions (MCRs) have received significant atten-
tion by being employed in many disciplines of chemistry and related
fields, such as in drug discovery [1] and synthesis of macrocyclic com-
pounds [2], natural products [3], peptidomimetics [4], polymer science
[5], and combinatorial chemistry [6]. Their excellent flexibility of
products, convergent reactions, and excessive structural and molecular
diversity that can be obtained in the final product of the single building
blocks in a one-pot manner from at least a three-component reaction
arrangement make them widely demanded [7]. Their exclusive features,
such as operational simplicity, substrates diversity, and atom and step
economy, which fulfill the possible aspects of green chemistry, magnify

their multifold importance in several disciplines [8]. Of the many
extensively investigated MCRs, the isocyanide-based, particularly the
Passerini three-component reaction (P3CR), is one of the most widely
used MCRs in organic chemistry and other files [9]. However, P3CR was
introduced into polymer and macromolecular chemistry only recently,
yet gaining attention rapidly for the design of new functional polymers,
though it can be potentially used as direct polymerization [10], mono-
mer synthesis [11], and post-polymerization modification [12,13].
Some excellent reviews and books have recently appeared to cover the
progress of MCRs in polymer science as new synthetic tools [14–16]. As
a pioneering work, Meier et al. [17] opened up an innovative insight by
operating a P3CR towards synthesizing polymers via Passerini-type
multicomponent polymerization (i.e., P-MCP).
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Since then, several works have been reported using P3CR as a
monomer synthesis tool for combining different polymerization tech-
niques such as nitroxide-mediated polymerization (NMP) [18,19],
reversible addition-fragmentation chain transfer (RAFT) polymerization
[20,21], atom transfer radical polymerization (ATRP) [18,22], and free
radical polymerization (FRP) [11]. Conventional FRP is one of the most
widely used techniques for synthesizing polymers due to its versatility,
simplicity, and cost-effectiveness. It is commonly applicable in in-
dustries for its ease of implementation, wide range of monomers,
tolerance to impurities, high reaction rate, high molecular weight,
compatibility with other techniques, etc. [11,23–25]. Apart from its
versatile advantages, combining MCR and FRP (termed as MCR-Є-FRP)
is still very limited in the literature [26]. In the previous case, Meier
group reported the synthesis of acrylate monomers through P3CR in
dichloromethane and aqueous media by tuning substituents on the iso-
cyanide and aldehyde components and further conducted FRPs to obtain
novel polyacrylates for the first time [11]. Although a series of acrylate
monomers were successfully synthesized, their study presented rela-
tively moderate yields (<75 %) in the P3CR cases using an environ-
mentally friendly water medium.

The P3CR synthetic strategy was purposefully used to induce func-
tionality on the side chains of methacrylic monomers and retained the
reactive double bond for further polymerizations. From the literature,
amide group-containing methacrylic-type monomers and using proper
solutions to polymerize such monomers still need to be expanded and
addressed. Herein, we report novel poly(carbamoyl methacrylate)s
(PCMAs) synthesized via combinations of P3CR and FRP (named P3CR-
Є-FRP) for the first time. As shown in Scheme 1, four carbamoyl meth-
acrylate (CMA) monomers were individually synthesized via P3CRs of
methacrylic acid (MAA) and cyclohexyl isocyanide (CHI) with different
substituent aldehydes in deionized water (DIW) in the first step. CMAs
with high purity and yields are obtained with an accelerating reaction
rate and avoiding further purification processes. Then, FRPs of the
carbamoyl methacrylate monomers were conducted to afford the
respective PCMAs. We further examined the thermal and solution-state
properties of the synthesized PCMAs by using differential scanning
calorimetry (DSC), thermogravimetric analysis (TGA), dynamic light
scattering (DLS), small-angle X-ray scattering (SAXS), and scanning
electron microscope (SEM).

2. Experimental section

2.1. Materials and characterization

All the following chemicals were purchased and used as received
without further purification: cyclohexyl isocyanide (CHI, 99 %), benz-
aldehyde (99 %), 4-methoxy benzaldehyde (98 %), methacrylic acid
(MAA, 98 %), and 1-butanol (>99 %) all were purchased from Thermo
Fisher Scientific. Isobutyraldehyde (97 %) and octanal were purchased
from TCI Chemicals and Sigma-Aldrich, respectively. Azobisisobutyr-
onitrile (AIBN, > 99 %) was bought from Aencore Chemicals. All
characterization details are depicted in the Supporting Information,
including analyses of solubility tests, gas chromatography (GC), gel
permeation chromatography (GPC), Fourier transform infrared (FT-IR)
spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, differ-
ential scanning calorimetry (DSC), thermogravimetric analysis (TGA),
and dynamic light scattering (DLS).

2.2. General synthesis procedure of CMA monomers via P3CR

In a 20-mL scintillation vial, MAA (2 mmol, 169 μL) and an aldehyde
(2 mmol) were added to 3 mL deionized water (DIW). An equimolar
ratio of CHI was added, and the agitation continued for 5 h at room
temperature. After 5 h, the separated solid precipitates were washed
with DIW repeatedly and dried under vacuum pressure. All samples
were kept in the refrigerator until needed.

2.3. Synthetic procedures of PCMA polymers via FRP

10 mmol of the prepared monomer and 0.05 mmol (8.0 mg) of AIBN
were added into a 10-mL round bottom Schlenk flask containing 3 mL of
DMF. Then, the sealed solution was stirred under a nitrogen atmosphere
for 25 min before allowing the polymerization process at 70 ◦C in an oil
bath for a few hours. The obtained polymer solution was cooled down
and transferred into cold DIW and rinsed with diethyl ether and ethyl
acetate to remove unreacted monomers and impurities.. After drying to
constant weight, the polymer sample was kept for further
characterization.

Scheme 1. Synthesis of novel poly(carbamoyl methacrylate)s (PCMAs) via combining aqueous-prompt Passerini three-component reaction and conventional free
radical polymerization (P3CR(aq)-Є-FRP).
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3. Results and discussion

3.1. Syntheses and characterizations of carbamoyl methacrylates (CMAs)

Four CMAs namely, methacrylic-isobutyraldehyde-cyclohexyl iso-
cyanide (MIC), methacrylic-octanaldehyde-cyclohexyl isocyanide
(MOC), methacrylic-benzaldehyde-cyclohexyl isocyanide (MBC), and
methacrylic-4-methoxybenzaldehyde-cyclohexylisocyanide (MMC)
were synthesized by P3CR frommethacrylic acid, cyclohexyl isocyanide,
and aldehydes of different substituents (R) via P3CR in DIW as shown in
Scheme 1. The synthesis of these CMA monomers through mild and
green methods can facilely keep the integrity of vinyl functionality and
is earmarked for further polymerization. P3CR is one of the most ver-
satile and valuable synthetic tools in inducing multifunctionality into
the monomers/polymers of desire [27]. Hence, we take these advan-
tages to integrate the ester-amide functionality into the CMAs in this
synthesis protocol. DIW water was selected over organic solvents or
other aqueous-based solvent systems because of its multiple advantages,
including fast reaction rate, relatively easy, green and accessible, and
nontoxic, leading to pure and high yields without further purification
processes [11,28,29]. The conversions of Passerini reactants were
studied by tracking GC trace analyses using n-butanol as a reference and
consumption of cyclohexyl isocyanide (CHI) at various times, as shown
in Fig. 1. The maximum time taken to reach high conversion for MIC and
MOC reactants is 0.5 and 1.5 h, respectively, and the conversion has
reached >96 % after 5 h in the case of MMC and MBC. The observed
conversion rate differences can be correlated with the structural dif-
ferences among reactants, i.e., the methoxyphenyl and phenyl sub-
stituents on the aldehyde pendant relative to the aliphatic chain of
octane and isopropyl groups contribute to the slow rate of conversion in
MMC and MBC. Literature supports this phenomenon [11]. The accel-
eration of multicomponent reactions (MCRs) in water is mainly due to
water’s high cohesive energy density (CED), the hydrophobic effect, and
the enhanced hydrogen bonding transition state during the reaction
[30]. Similarly, high product yields of CMAs were obtained in DIW
(Table S1; see the Eleronic Supporting Information (ESI)). Figs. S2 and
S3 show the resultants’ chemical structural assign (see the ESI). The
product yields of all monomers are nearly quantitative at over 96 %
except MMC, which has a good yield of 87.2 %. This is most likely due to
the electron-donating nature of methoxy substituent through resonance,
which deactivates the oxonium ion formed from an aldehyde in the

transition state during the reaction, making it less susceptible to the
nucleophilic attack from isocyanide [31] (illustrated in Scheme S1 in the
ESI). The electron-donating groups, including the benzene ring, are
mainly through resonance rather than inductive. Ostaszewski and co-
workers reported that MCRs attained higher conversions in DIW than
organic or aqueous-based mixtures [32,33]. Herein, using water as a
reaction medium for synthesizing CMA monomers surrounded by a
specific high cohesive energy density environment from DIW (CEDDIW=

550.2 cal/mL at 25 ◦C) [34] and poor solubilities of CMAs in DIW,
leading to effective conducting P3CR, unnecessary time spent, pre-
venting sample loss by extraction and purification, and avoiding utili-
zation of organic solvents.

EA, FT-IR, DSC, 1H NMR, and 13C NMR instruments further
confirmed the purity of the obtained CMAs. The quantitative measure-
ments of C, H, and N atoms for CMAs experimentally agree with the high
purity theoretical values (EA and FT-IR details are summarized in the
experimental section, Table S1, Fig. S1 (see the ESI)). Figs. S2 and S3
show that the resultants’ chemical structural assignments of 1H and 13C
NMR spectra convey the successful MIC, MOC, MBC, and MMC syn-
thesis. Notably, the appearances of peaks b in 1H NMR spectra (ca. 5.1
ppm/doublet in Fig. S2A (MIC), ca. 5.2 ppm/triplet in Fig. S2B (MOC),
ca. 6.1 ppm/singlet in Fig. S2C (MBC), and ca. 6.4 ppm/singlet in
Fig. S2D (MMC)] and peaks e in 13C NMR spectra (ca. 75 ppm for each in
Fig. S3), resulting from the aliphatic or benzylic/α-amide/α-acetoxy
protons and carbons, indicate the foremost characteristic signals via
P3CR. Fig. S4 displays a representaive HR-MS spectrum of MMC
monomer with high purity.

3.2. Synthesis and characterizations of poly(carbamoyl methacrylate)s
(PCMAs)

As illustrated in Scheme 1, FRPs of CMAs were conducted in DMF in
the presence of thermal initiator AIBN (CMA/AIBN = 100/0.5 at 70 ◦C;
[CMA]0 = 0.67 M). All the polymers were purified by precipitating out
in cold DIW and rinsed with diethyl ether and ethyl acetate to remove
unreacted monomers and impurities. Before conducting instrumental
characterizations (1H NMR, FT-IR, GPC, TGA, DSC, and DLS analyses),
we examined the solubilities of the synthesized polymers in several
common solvents. As shown in Table S2 (see the ESI), all PCMAs are
entirely soluble in DMAc, EtOH, DMSO, and THF but insoluble in DIW
and some other common organic solvents of acetone, ethyl acetate, and
dichloromethane. Compared with the solubilities of the corresponding
monomers, the poor solubilities of PCMAs might come from the changes
in molecular weight, intramolecular hydrogen bonding, hydrophobic
effect, and the spacing between the molecular structure of a polymer,
which are the most influencing factors for the solubilities of the polymer
[35,36]. Thus, the PCMAs with good solubilities in high-polar solvents
of DMAc, DMSO, EtOH, and THF are mainly plausible due to the in-
terruptions of strong hydrogen bonding within intra- and inter-chains
[37].

As shown in Fig. 2, we assigned the corresponding characteristic of
the PCMAs in 1H NMR spectra. Significant disappearances of vinyl sig-
nals of CMAs and retained the aliphatic or benzylic/α-amide/α-acetoxy
protons with a broadening fashion (i.e., peak b in each spectrum) were
delineated. The FT-IR spectroscopy results of CMAs and PCMAs are
shown in Fig. S1 (see the ESI). The corresponding absorption peaks are
similar and mainly observed at around 3300 (secondary N–H stretch-
ing), 2935–2860 (methyl and methylene C–H stretching), 1725 (con-
jugated ester C––O stretching), and 1660 cm− 1 (secondary amide C––O
stretching). The strong peaks between 1400 and 1000 cm− 1 mainly
indicate methyl C–H rocking, ester C–O stretching, and amide C–N
stretching vibrations. As shown in Fig. 3 and summarized in Table 1, the
molecular weight characteristics (i.e., number-average molecular
weight (Mn) and molecular weight dispersity (Đmw)) of PCMAs are ob-
tained in a range of 44,000–58,000 and 1.6–3.7 by using GPC analysis
(THF as the eluent at 35 ◦C). It is noted that PMIC displays a relatively

Fig. 1. CHI conversion (traced by GC) via aqueous P3CR at room temperature
to the synthesis of carbamoyl methacrylates (CMAs) (MAA/Aldehydes/CHI =
1/1/1; [MAA]0 = 0.67 mM in deionized water (DIW)).
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low Đmw compared to the other polymers. The relatively shorter hy-
drocarbon segment on the side chain of PMIC likely allows it to have
more intermolecular hydrogen bonding susceptibility, leading to higher
uniformity than other PCMAs. Thereby, this contributes to the growing
chains with relatively low Đmw. These results indicate successful

syntheses of PCMAs by conducting facile conventional FRPs of the
CMAs.

3.3. Thermal properties of PCMAs

The thermal properties of PCMA polymers were studied using TGA
and DSC thermograms. The thermal decomposition values of PCMAs at
5 wt% loss of weight (Td5%) are given in Table 1. With similar backbone
structures of the PCMAs, polymers containing bulky groups on their side
chains have higher Td values and a slow rate of decomposition (Fig. 4A).
Therefore, PMIC, PMBC and PMMC have higher Td5% values than that of
PMOC. Because of rigidity and compactness, bulky group-containing
polymers have higher thermal stability than their long alky-
counterparts of similar molecular weights [38–41]. As displayed in
Fig. 4B, the glass transition temperature (Tg) values of PCMAs are
identified by DSC traces. No clear and distinct Tm peak was observed in
all cases, indicating their amorphous property. The Tg value differences
among the polymers are mainly attributed to their various aldehyde
substituents. Comparatively, PMOC has a lower Tg value (76.5 ◦C) due to
its long aliphatic hydrocarbon chains on its aldehyde substituent

Fig. 2. 1H NMR spectra (400 MHz) of (A) PMIC, (B) PMOC, (C) PMBC, and (D) PMMC (d-solvents are illustrated in the spectra).

Fig. 3. GPC traces of PMIC, PMOC, PMBC, and PMMC (CMA/AIBN = 100/0.5
at 70 ◦C; [CMA]0 = 0.67 M in DMF).

Table 1
Characterization and thermal properties of PCMAs.

PCMA Mn Đmw
a Tg (◦C) Td5% (◦C)b Char yield (%)

PMIC 44,140 1.6 127.8 260.3 2.2
PMOC 48,970 3.7 76.5 226.9 2.0
PMBC 49,300 3.4 131.8 257.4 1.9
PMMC 58,370 2.9 109.5 240.6 0.9

a Đmw: molecular weight dispersity (=Mw/Mn).
b Td5%: decomposition temperature at 5% weight loss.
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sidechains, and PMIC and PMBC have higher Tg values (129 and 132 ◦C,
respectively). PMIC is likely due to its short hydrocarbon chain, which
can have more intermolecular hydrogen bonding than PMOC. Never-
theless, the Tg value of PMBC is higher than PMMC, which both have
benzene rings in their aldehyde sidechains. This can arise from the
flexibility of PMMC, which additionally contains ether functionality. In
brief, relatively high Tg values of PCMAs come with small side groups
and rigid aromatic rings that increase intermolecular interaction and
hinder chain flexibility, respectively [42–46]. The TGA and DSC results
are summarized in Table 1.

3.4. Solution properties of PCMAs

It is well-known that micellar polymer nanoparticles, extensively
studied for biomedical applications, are generally formed above critical
micelle concentration (CMC) through the self-assembly of amphiphilic
block polymers [47,48]. However, it is still limited by using a block
copolymer-free system to attain nano-scaled polymeric micelles (PMs)
[49]. As shown in Fig. 5, excitingly, the PCMA homopolymers can form
stable self-assembled micellar having diameter of particle sizes (dps) in a
range of 170–311 nm and dispersity of particle sizes (Đps) in a range of
0.10–0.23, elucidating their amphiphilic feature. Notably, PMBC (dps =
226 nm, Đps = 0.14) and PMIC (dps = 170 nm, Đps = 0.1), relatively,
have lower Đps and Đmw compared to the other PCMAs. These differ-
ences arise from the changes in the hydrophobic segment chain length of
the hydrophilic pendant among PCMAs. Namely, PMIC and PMBC have
shorter hydrophobic segments than PMOC and PMMC, in which the
longer hydrophobic chains possess more steric hindrance, resulting in

larger particle size aggregates and broader PDI. The high stability of the
PCMA-micellized aqueous solutions was further confirmed after one
month, observing insignificant changes in dps and Đps (shown in Fig. S2
and Table S3 (see the ESI)). As shown in Fig. 6, PCMA-micellized be-
haviors demonstrate ultralow CMC values ranging from 1.6 × 10− 5 to
4.0 × 10− 9 mg/mL (summarized in Table S3 (see the ESI)). A common
strategy to attain high-stability micelles is to render or enhance the
inter-chain interactions within the forming micelle [48,50,51]. The ul-
tralow CMC values of PCMA micelles are far smaller than those formed
from low molecular weight surfactants or conventional small molecule
micelles (usually in the ranges of 10− 3–10− 4 mg/mL) [52–54]. The
particular ultralow CMC value of PMOC (4.0 × 10− 9 mg/mL) could be
attributed to its long aliphatic hydrocarbon substituent from the alde-
hyde reactant. Amphiphilic polymers with long hydrophobic chains
have lower CMC values than those with shorter hydrocarbons, which
might increase the size of polymeric micelles [48]. This phenomenon
can be observed in the cases of PMOC and PMIC micelle sizes (226 and
311 nm in Fig. 5A and B, respectively). Forming a stable dispersion in a
highly diluted physiological solution is a challenge [50]. Herein, PCMAs
show advanced stable aqueous dispersion at ultralow concentration,
making them potential candidates as aqueous carriers in biomedical,
catalyst, or relevant applications.

Aqueous solutions with polymer micelles (PMs) are analyzed by
small-angle X-ray scattering (SAXS) for further examinations of the
microstructures. As shown in Fig. 7, the SAXS scattering profiles do not
display periodic aggregations of the microstructures. However, along
with the linear behavior of log (I(q)) versus log (q) in the low-q range
(0.03 < q < 0.07 nm− 1), PCMA-based PMs possess the transition fitting
slopes of approximated − 4, revealing that a distinct Guinier regime of
spheres is observable. The morphology of the PMs is then analyzed using
an SEM instrument. Fig. 8 displays that solution-states of PCMAs formed
globular nanostructures and their corresponding sizes are estimated.
The nanoparticle sizes are approximately 100 nm. Based on the chemical
structures of PCMAs, the self-assembly behaviors in aqueous are
attributed to the presence of their hydrophilic (amide group) and hy-
drophobic (alkyl and benzyl groups) parts. Compared to Figs. 5 and 8,
the particle sizes monitored by DLS are larger than those observed by
SEM. The significant shrinkage in the dried state is plausibly ascribed to
the strong hydrogen bonding of PCMAs. Several studies have reported
that amphiphilic homopolymers with hydrophilic and lipophilic

Fig. 4. (A) TGA traces (ramping: 10 ◦C/min in 30–800 ◦C) and (B) DSC curves
(recorded in 2nd run; ramping: 20 ◦C/min in 25–200 ◦C) of PCMAs under N2(g).

Fig. 5. Particle sizes of (A) PMIC, (B) PMOC, (C) PMBC, and (D) PMMC in
deionized water (0.1 mg polymers/mL DIW) after 1 day (each measured by DLS
with five experimental tests).

Fig. 6. The FL intensity ratio of I392/I372 from pyrene emission spectra versus
the log of the concentration (logC (mg/mL), measurements used to determine
the CMC for (A) PMIC, (B) PMOC, (C) PMBC, and (D) PMMC.

D.D. Ejeta et al. European Polymer Journal 218 (2024) 113361 

5 



functionalities form chains of surfactants with groups on opposite sides,
creating facial amphiphilicity [55–59]. Accordingly, we proposed a
plausible solution-state self-assembly of the PCMAs. As shown in
Scheme 2, the hydrophilic groups are oriented towards the aqueous,
while the lipophilic hydrophobic substituents remain inside the
microstructures.

4. Conclusions

P3CR(aq) was demonstrated as a facile tool to efficiently and effec-
tively synthesize various methacrylic ester-amides in water. Water was
used as a reaction medium, and a high yield (ca. 90 %) and purity of
CMA monomers were acquired. This might be due to a synergistic effect
of a high cohesive energy density environment and poor solubilities. We
can note that water-insoluble solid substrates will be the limitations in
conducting the aqueous-prompted P3CR. One can use surfactants or co-
solvents to overcome such limitations and achieve well-dispersions of

water-insoluble substrates. FRP was then used to synthesize poly(car-
bamoyl methacrylate)s with molecular weights of 44,000–58,000 from
various CMAs. Their Tgs range from 76–131 ◦C and Td5%s are mainly
above 225 ◦C. Interestingly, the synthesized PCMAs can self-assemble
into stable micellar nanoparticles (170–311 nm) with good water dis-
persibility and low CMC (1.6 × 10− 5–4.0 × 10− 9 mg/mL) for up to one
month. SAXS analysis of solution-states and SEM analyses of dried
samples illustrated a globular morphology. Compared to the DLS and
SEM measurements, the substantial shrinkage in the dried state is likely
attributed to the strong hydrogen bonding present in PCMAs. For more
details, investigations and self-assemblies in various solvents, salts, pH,
and temperatures are currently underway. In this study, an effective
combination of P3CR(aq)-Є-FRP was demonstrated, making them po-
tential candidates for biomedical applications such as drug carriers.
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Fig. 7. SAXS of polymer micelle aqueous solutions of (a) PMIC(aq), (b) PMO-
C(aq), (c) PBMC(aq), and (d) PMMC(aq) (each solution contains ca. 0.05 wt% of
PCMA in DIW).

Fig. 8. SEM images of polymeric micelles (PM) for (a) PMIC, (b) PMOC, (c) PMBC, and (d) PMMC (inserted photos: in zoom-in scale; free-dried samples from 0.05 wt
% PM solutions).

Scheme 2. Proposed self-assembly structures of PCMAs in aqueous.
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