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Conjugated microporous polymers (CMPs) feature
extended excellent porosity properties and fully conjugated
electronic systems, making them highly effective for several uses,
including photocatalysis, dye adsorption, CO, capture, super-
capacitors, and so on. These polymers are known for their high
specific surface area and adjustable porosity. To synthesize DHTP-
CMPs (specifically TPE-DHTP CMP and Anthra-DHTP CMP)
with abundant nitrogen (N) and oxygen (O) adsorption sites and
spherical structures, we employed a straightforward Schiff-base [4
+ 2] condensation reaction. This involved using 2,5-dihydroxyter-
ephthalaldehyde (DHTP-2CHO) as the primary building block
and phenolic OH group source, along with two distinct structures:
4,4',4” 47 (ethene-1,1,2,2-tetrayl ) tetraaniline (TPE-4NH,) and
4,4',4”,4”-(anthracene-9,10-diylidenebis(methanediylylidene) )tetraaniline (Anthra-4Ph-4NH,). The synthesized Anthra-DHTP
CMP had a remarkable BET surface area (BETg,) of 431 m” g~'. Additionally, it exhibited outstanding thermal stability, as shown by
a Ty of 505 °C. Furthermore, for practical implementation, the Anthra-DHTP CMP demonstrates a significant capacity for
capturing CO,, measuring 1.85 mmol g~' at a temperature of 273 K and 1 bar. In a three-electrode test, the Anthra-DHTP CMP has
a remarkable specific capacitance of 121 F g™' at 0.5 A g~'. Furthermore, even after undergoing 5000 cycles, it maintains a
capacitance retention rate of 79%. Due to their outstanding pore characteristics, abundant N and O, and conjugation properties, this
Anthtra-DHTP CMP holds significant potential for CO, capture and supercapacitor applications. This work will pave the way for the
development of materials based on DHTP-CMPs and their postmodification with additional groups, facilitating their use in
photocatalysis, photodegradation, lithium battery applications, and so on.
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and remarkable rate handling capacities, classifying them as

. 22-27
The rapid increase in emissions of carbon dioxide (CO,) from large-capacity energy storage systems. As a result, SCs are
the burning of fossil fuels presents significant challenges for valuable for energy storage in industrial, transportation, and
global societies, including climate change, resource depletion, technological applications. Additionally, optimizing the power
and elevated levels of environmental contamination.'™ density and performance of supercapacitors necessitates careful
Considerable endeavors are underway to mitigate CO, consideration of the physical and chemical properties of the
emissions employing developing affordable, environmentally electrode materials. Therefore, to meet current demands, a

friendly devices, aimed at fostering enduring advantages for our
societies.'’™'® For instance, electrochemical energy storage
(EES) systems like lithium-ion batteries (LIBs), super-
capacitors (SCs), and water-splitting electrolyzers, are gaining June 23, 2024
prominence for energizing developing electronic devices due to July 23, 2024
their dependable functionality and flexibility.'*~>* BILs and August 9, 2024
SCs are essential components of electronically stored energy August 16, 2024
systems. SCs offer numerous advantages over batteries,

including extensive cycle longevity, good power densities,

shift toward advanced materials and products is required.”*~*°
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Supercapacitors may be classified into three primary
categories according to their energy storage techniques:
electric double-layer capacitors (EDLCs), battery-like materi-
als, and pseudocapacitive devices.”' SCs are widely utilized in
various applications such as high-power supplies, multilevel
inverters, advanced electric, and vehicles. Their extensive cycle
life, high power density, excellent rate capability, wide
operating temperature range, ultrafast charge/discharge rates,
reversibility, and potential to meet increasing power demands
make them a promising solution to address energy
scarcity.”> > Despite progress, SCs still have lower energy
densities compared to other rechargeable batteries, and their
market share in energy storage devices remains relatively
small.””** To expand the applicability of SC devices, significant
endeavors are being directed toward augmenting the energy
densities of SCs and engineering materials endowed with
multifaceted attributes, such as extensive surface areas,
customizable porous architectures, highly conductive systems,
and enhanced wettability.”

Conjugated polymers are often preferred in SCs due to their
cost-effectiveness and widespread availability.** For example,
electrodes made from polyaniline/composites nanostructures
have shown a capacitance of 1221 F g™'.*' Nonetheless,
conventional conjugated polymers (for example, polypyrrole,
polyaniline, and polythiophene) are typically devoid of
porosity and lack sufficient durability.”” Typically, their
capacitance declines significantly after more than 1000 charge
and discharge cycles. CMPs are a subset of porous organic
polymers characterized by extended 7z-conjugated structures
within their microporous networks, showing promising
potential for use in supercapacitors.””** These porous
architectures, distinct from those found in linear polymers,
are expected to significantly improve electron and ion transport
capabilities.”> CMPs are traditionally synthesized using various
C—N or C—C coupling reactions, such as oxidative polymer-
ization, Buchwald-Hartwig amination, Sonogashira-Hagihara
coupling, Schiff base formation, Suzuki-Miyaura coupling,
cyclotrimerization, Yamamoto coupling, and phenazine ring
fusion methods.** ™" These techniques have been utilized to
fashion CMPs showcasing varied structural configurations and
intrinsic attributes.”’ CMPs have been extensively studied for
their applicability in various fields, including light-emitting
diodes, energy conversion, chemosensing, energy storage,
catalysis, and various subfields of biological sciences.””™>’
The suitability of CMPs as active electrode materials for
supercapacitors has been assessed by studying CMPs with
different structural variations.”®”®* Due to the diverse building
blocks used in CMP structures, their ability to modify 7-
conjugated units, and their inherent tunability, CMPs often
surpass traditional electrode materials in supercapacitor
electrode design.”> Tetraphenylanthraquinone (Anthra-4Ph)
is a chemical molecule with a complex aromatic structure,
featuring an anthraquinone core bonded to four phenyl groups.
Renowned for its strong chemical stability and unique
electrical properties, Anthra-4Ph has garnered interest across
a wide range of scientific fields. Its conjugated structure allows
for significant electron delocalization, making it a valuable
component in organic electronics, photovoltaics, and photo-
chemical applications.””*> Mohamed et al. synthesized An-
CPOP-2 using Anthra-4Ph and 2,4,6-trichloro-1,3,5-triazine as
monomers. The resulting material demonstrated a CO,
capacity of 1.52 mmol g™ (6.7 wt %, 273 K) and capacitance
of 98.4 F g~ Our group-prepared PET-Im CMP through
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Sonogashira coupling with a specific capacitance of 63 F g~.**

According to Bhaumik and co-workers, TFR-NDA demon-
strated a capacitance of 362 F ¢! in a three-electrode setup.*’
The Pandey group disclosed that IITR-COF possesses a high
specific capacitance of 182.6 F g™}, as measured at 0.3 A g71.%7

In this work, using a straightforward and effective Schiff-base
condensation process, we successfully created two types of
DHTP-CMPs with CH=N and phenolic units: TPE-DHTP
CMP and Anthra-DHTP CMP. Anthra-DHTP CMP is notable
for its exceptional thermal stability, with a thermal decom-
position temperature (Ty;,) of 505 °C and a char yield of 68
wt %. Based on N, adsorption—desorption and CO, isotherms,
Anthra-DHTP CMP has the largest BETg, of 431 m* ¢! and
the highest CO, absorption capacity (1.85 mmol g~' or 8.14
wt % at 273 K). Furthermore, Anthra-DHTP CMP
demonstrated capacitance values of 121 F g™' in the GCD
tests. This study showcases the efficient production of DHTP-
CMPs through free-metal [4 + 2] condensation reaction and
highlights their potential applications beyond supercapacitors
and CO, absorption. These DHTP-CMP materials are also
expected to show promise in related areas such as iodine and
dye capture, photocatalysis, and other fields.

4-Aminophenylboronic acid (BZB-NH,, 98%), tin (Sn, >99.8%),
carbon tetrabromide (CBr,, 99%), tetrahydrofuran (THF), potassium
carbonate (K,CO;, >99.8%), acetic acid (AcOH, >99%), anthraqui-
none (Anthra, 97%), toluene, triphenylphosphine (PPh,, 99%), 4,4'-
diaminobenzophenone (BZP-2NH,, 97%), 1,4-dioxane (DO),
mesitylene (98%), and acetone, tetrakis(triphenylphosphine)-
palladium [Pd(PPh;),, 98%], anhydrous magnesium sulfate
(MgSO,, >99.5%), and sodium hydroxide (NaOH, >98%), 2,5-
dihydroxyterephthalaldehyde (DHTP-2CHO, 98%), were ordered
from Sigma-Aldrich and Alfa Aesar.

BZP-2NH, (3.5 g, 15.73 mmol) was added to 170 mL of HCl at 60
°C. Subsequently, 10.5 g (88 mmol) of Sn was gradually added, and
the reaction for 24 at 80 °C. After cooling the flask, the white
precipitate was rinsed with NaOH (1 M) solution to acquire a green
powder (Scheme S1). FTIR (ecm™'): 3423, 3359 (N—H), 3030
(aromatic C—H), 1616. "H NMR [DMSO-dg, 5, ppm, Figure S1]: 6.6
(8H), 6.3 (8H), 4.8 (NH,). *C NMR [DMSO-d,, &, ppm, Figure
S2]: 146—113.1.

CBr, (80 g, 303.7 mmol), Anthra (10 g, 48 mmol), and PPh; (50 g,
151 mmol) in a 250 mL two-neck flask. Subsequently, we added 700
mL of toluene to the flask and cooled the mixture to —10 °C using an
ice bath and acetone. The reaction mixture was kept for 2 h at =10 °C
and then heated to 100 °C. The insoluble material was removed by
vacuum filtration following the reaction. The organic layer was
evaporated using a rotary evaporator, and the resulting substance was
recrystallized from MeOH, yielding a light-yellow solid [6.37 g
Scheme S2]. FTIR (cm™, Figure S3): 3069 (aromatic C—H), 1559.
'"H NMR [DMSO-d, , ppm, Figure S4]: 7.8—7.83 (4H), 7.3—7.3
(4H). *C NMR [DMSO-dg, &, ppm, Figure SS5]: 139.8—91.4S.

K,CO; (3.2 g, 23.1 mmol), Pd(PPh;), (0.33 g, 0.3 mmol), Anthra-Br,
(1.00 g, 2.9 mmol), BZB-NH, (3.2 g, 23.1 mmol), and were mixed in
a 250 mL two-neck flask containing a combination of DO and H,0O
(80/40 mL) and increased the temperature reaction to 100 °C for 48
h. The insoluble material was removed by filtration and the reaction
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Figure 1. Using a Schiff base reaction for the synthesis of (a) TPE-DHTP and (b) Anthra-DHTP CMPs from DHTP-2CHO as the building block.

solution was poured into HCI (S mL) with H,0 (400 mL) resulting
in the formation of a light blue precipitate. This solid was then added
to 300 mL of MeOH and stirred vigorously for 1 h at 60 °C, yielding
Anthra-4Ph-4NH, (2.5 g, Scheme S3). FTIR (cm™): 3429, 3344
(N—H), 3024 (aromatic C—H). '"H NMR [DMSO-dy, §, ppm, Figure
S6]: 7.62, 6.95, 6.69, 6.44, 499 (NH,). 7.95-6.44. 3C NMR
[DMSO-dy, 8, ppm, Figure S7]: 147.9—113.82.

Use a 25 mL Schlenk tube, 0.10 g of TPE-4NH, (0.25 mmol), 0.08 g
of DHTP-2CHO (0.48 mmol), DO/mesitylene (6 mL/6 mL), and
1.5 mL of AcOH (3 M). The solution mixture was refluxed at 110 °C
for 3 days. After the reaction, the solid was filtered and purified using
Soxhlet extraction [with THF and EtOH; respectively]. Finally, the
resulting mixture was dried in a vacuum oven for 1 day, yielding a red
powder known as TPE-DHTP CMP. FTIR (KBr, cm™): 3373 (OH
stretching), 3029 (C=C—H), 1663 (C=N). Solid-state '*C NMR:
147.31 (C=N), 137.89—120.75 ppm (aromatic carbons). For
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Anthra-DHTP CMP: 0.10 g of Anthra-4Ph-4NH, (0.18 mmol),
0.08 g of DHTP-2CHO (0.48 mmol), DO/mesitylene (6 mL/6 mL),
and 1.5 mL of AcOH (3 M) to obtain Anthra-DHTP CMP as a
brown powder (Yield: 84%) FTIR (cm™): 3372 (OH stretching),
3037 (C=C-H), 1666 (C=N). Solid-state *C NMR: 149 (C=N),
140.12—124.57 ppm (aromatic carbons). As illustrated in Figure S8,
the solubility of TPE-DHTP and Anthra-DHTP CMPs was tested in
various organic solvents, including acetone, MeOH, DMF, DCM, and
THEF. The results indicated that both TPE-DHTP and Anthra-DHTP
CMPs were insoluble in these solvents.

We developed TPE-DHTP and Anthra-DHTP-linked CMPs
(DHTP-CMPs) enriched with OH and C=N units, leveraging

https://doi.org/10.1021/jacsau.4c00537
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Figure 2. (a) and (b) FTIR spectra of TPE-4NH,, TPE-DHTP CMP, Anthra-4Ph-4NH,, and Anthra-DHTP CMP. (c) Solid-state *C NMR
spectra and (d) TGA traces of TPE-DHTP and Anthra-DHTP CMPs.

the potential of heteroatoms (N and O) in CMP structures for
effective adsorption sites in supercapacitors and CO, capture
[through robust physical interactions]. These DHTP-CMPs
were synthesized using the Schiff base condensation polymer-
ization technique [4 + 2]. Figure la,b illustrate the utilization
of DHTP-2CHO [served as the building unit and a source of
OH groups in the synthesis process] and TPE-4NH, and
Anthra-4Ph-4NH, in DO/mesitylene with AcOH (3 M).
Scheme S1 outlines the synthesis of TPE-4NH,, which is
achieved by reacting BZP-2NH, with Sn in an HCI solution,
yielding a green powder. In Scheme S2, Anthra-4Ph-4NH, is
prepared by reacting the Anthra unit with CBr,/PPh; in
toluene to obtain Anthra-Br,, a light-yellow powder.
Subsequently, Scheme S3 illustrates the Suzuki coupling
reaction between Anthra-Br, and BZB-NH, in the presence
of Pd(PPh;),/K,CO; in DO/H,0O mixtures to produce
Anthra-4Ph-4NH,. To confirm the synthesis of TPE-4NH,,
Anthra-4Ph-4NH,, TPE-DHTP, and Anthra-DHTP-linked
CMPs, FT-IR spectroscopy was initially conducted (Figure
2a,b). Strong absorption peaks corresponding to NH, groups,
aromatic CH bonds, and C=C bonds are evident in Figure
2a,b. Specifically, for TPE-NH,, peaks were observed at 3423,
3359, 3030, and 1616 cm™", while for Anthra-4Ph-4NH,, peaks
appeared at 3429, 3344, 3024, and 1612 cm™!. The OH and
aromatic CH absorption bands in the TPE-DHTP and Anthra-
DHTP CMPs were detected between 3378 and 3372 cm™" and
3029 to 3037 cm”', respectively, following the [4 + 2]
condensation process involving DTHP-2CHO with TPE-
4NH, and Anthra-4Ph-4NH,. Furthermore, the absence of
the C=0 and NH signals in FTIR spectra of DHTP-CMPs
indicates the successful construction of the DHTP-CMPs.*"%*
The structure of both DHTP-CMPs was further analyzed using
solid-state *C NMR spectroscopy. In the TPE-DHTP CMP,
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two distinct resonance peaks were observed: one at 147.31
ppm corresponding to the C=N signal, and another in the
range of 137.89—120.75 ppm representing aromatic carbon
signals, as depicted in Figure 2c.

Similarly, in the Anthra-DHTP CMP, the C=N signal
appeared at 149.0 ppm, while the aromatic carbon signals were
observed in the range of 140.12—124.57 ppm. The XPS survey
of TPE-DHTP and Anthra-DHTP CMDPs, as seen in Figure
S9a and S10a, revealed three peaks corresponding to the
binding energies of C 1s, N 1s, and O 1s. The chemical states
of C, N, and O for TPE-DHTP and Anthra-DHTP CMPs were
further analyzed by deconvoluting the high-resolution XPS
spectra. The three peaks of high-resolution C 1s XPS spectra
deconvolution for TPE-DHTP and Anthra-DHTP CMPs are
associated with C=C—C (284.4 ¢V), C—OH (286.3 ¢V), and
C=N (285.38 eV), as shown in Figures S9b and S10b. Both
TPE-DHTP and Anthra-DHTP CMPs displayed one peak for
C=N-C bonds at 399.0 and 398.8 eV, respectively, based on
the HR N 1s XPS spectral deconvolution, as presented in
Figures S9c and S10c. Additionally, the O 1s XPS spectral
deconvolution revealed a C—OH peak centered at 532.5 eV for
TPE-DHTP CMP and at 532.8 eV for Anthra-DHTP CMP, as
illustrated in Figures S9d and S10d. According to the TGA
results (Figure 2d), TPE-DHTP CMP exhibited Ty and Ty,
values of 417 and 493 °C, respectively. Upon heating to 800
°C, it yielded a char yield of 62 wt %. Similarly, Anthra-DHTP
CMP showed Ty and Ty, values of 449 and 505 °C,
respectively, with a char yield of 68 wt %. These findings
underscore the excellent thermal stability of both DHTP-
CMPs. Furthermore, Anthra-DHTP CMP exhibits superior
thermal stability compared to TPE-DHTP CMP, likely due to
the structural distinctions between the two compounds. The
structure of Anthra-DHTP CMP may include stronger
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Figure 5. CO, absorption efficiency of the TPE-DHTP and Anthra-DHTP CMPs was evaluated at temperatures of (a) 298 and (b) 273 K.

intermolecular forces and a more rigid framework, contributing
to its higher thermal resistance. We conducted N, adsorption/
desorption isotherm measurements at 77 K and utilized SEM
and TEM to investigate the morphology (Figure 3), aiming to
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elucidate the porous characteristics of DHTP-CMPs. Figure
3a,b depict the N, adsorption/desorption isotherm curves. The
results indicate that TPE-DHTP CMP exhibits a rapid increase
in adsorption at low relative pressures (P/P, < 0.1), indicative
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Figure 6. Cyclic voltammetry (CV) curves of (a) TPE-DHTP and (b) Anthra-DHTP CMPs at 5—200 mV s/, (c) CV curve of DHTP-CMPs

electrodes were obtained using a scan rate of 50 mV s

electrodes.

of strong N, interaction. According to the IUPAC
classification, this isotherm curve is categorized as Type IL
Additionally, Brunauer—Emmett—Teller (BET) analysis re-
vealed a total pore volume (Vo) of 0.53 cm® g™" and a BET,
of 168 m* g~!. The pore size distribution reveals two pore sizes
at 2.3 and 4.2 nm (Figure 3c). Similarly, Anthra-DHTP CMP
exhibits a Type IV isotherm characterized by a rapid increase
in adsorption at low relative pressures and the presence of a
hysteresis loop. This suggests its microporous nature,
supported by BETg, of 431 m* g7/, a V,yy of 0.36 cm® g7/,
and a pore size of 1.9 and 2.3 nm (Figure 3d). The TPE-
DHTP-CMP and Anthra-DHTP-CMP exhibit irregular non-
spherical particles, as shown by the SEM pictures in Figure
3e—h. The SEM findings were also comparable with TEM
images (Figure 3ij).

SEM-EDS element mapping images depicted in Figure 4a,b
indicate the uniform distribution of elements C (white color),
N (red color), and O (green color) throughout the networks of
both TPE-DHTP CMP and Anthra-DHTP CMP. Figures S11
and S12 from the XRD study illustrate the amorphous nature
of both DHTP-CMP networks, as evidenced by a broad peak.

As seen in Figure Sa,b, further research was conducted on
the CO, uptake isotherms at 298 and 273 K for TPE-DHTP
CMP and Anthra-DHTP CMP to evaluate their practical
adoption. The Anthra-DHTP CMP exhibits a higher capacity
for CO, adsorption at both 298 K (1.69 mmol g~', 7.43 wt %)
and 273 K (1.85 mmol g/, 8.14 wt %) compared to TPE-
DHTP CMP [0.87 (3.83 wt %) and 1.4 (6.16 wt %) mmol g™,
respectively measured at 298 and 273 K]. The variation in
adsorption can be ascribed to the greater BETs, of Anthra-
DHTP CMP and the potential presence of phenolic OH units
and N atoms within its framework, which may act as basic sites
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and (d) the relationship between specific capacitance and scan rate for DHTP-CMPs

to capture acidic CO, molecules.”*”"" The Clausius—
Clapeyron equation was used to determine the isosteric heat
of adsorption (Q,,) for Anthra-DHTP and TPE-DHTP CMPs.
The results revealed that at a low CO, adsorption level of
approximately 0.5 mmol/g, the Q, for Anthra-DHTP CMP is
29.01 kJ/mol, while for TPE-DHTP CMP, it is 21.46 kJ/mol.
These values were derived from the CO, adsorption results
obtained at 298 and 273 K. It is worth noting that our DHTP-
CMPs demonstrate superior CO, adsorption compared to
other porous organic materials. These materials include
pyrene-PAFs (0.90-1.15 mmol g~'),”" CMP-1-(OH), (1.8
mmol g™'),”* tri(4-ethynylphenyl)amine-PAFs (1.19 mmol
g™"),”? and CMP-1-AMD1 (1.51 mmol g*).”*

Using KOH (1 M) as the electrolyte in a three-electrode
system, we initially investigated the electrochemical perform-
ance and mechanism of TPE-DHTP CMP and Anthra-DHTP
CMP electrodes for supercapacitor applications. Our electro-
des, made from these materials, were shaped like rectangles.
The CV curves displayed humps over a potential window that
varied with scan rate [Figure 6a,b]. As the potential scan rate
increased, the peak current of both TPE-DHTP CMP and
Anthra-DHTP CMP electrodes also rose. This indicated a
small amount of charge transfer resistance, pseudocapacitance,
and electric double-layer capacitance (EDLC) as the sources of
their capacitive responses.””’> The electron-rich phenyl rings
and heteroatoms contributed to this characteristic, as
evidenced by the humps

in the rectangular CV curves.”® The capacitive properties of
Anthra-DHTP CMP are outstanding even at high scan rates, as
presented by the CV curves for each electrode created at 50
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mV s7}, shown in Figure 6¢. The CV curve of Anthra-DHTP
CMP, which has a larger integral area compared to that of
TPE-DHTP CMP, indicates the best capacity for charge
storage. Consequently, as illustrated in Figure 6d, Tables S1
and S2, the distinctive capacitance of Anthra-DHTP CMP is
greater than that of TPE-DHTP CMP at various scan rates.

The specific capacitance of Anthra-DHTP CMP is calculated
to be 70, 36.34, 28, 25.1, 23.51, 22,83, and 18.8 C g at 5, 10,
30, 50, 70, 100, and 200 mV s™', respectively. Cyclic
voltammetry (CV) is considered the most significant method-

ology for examining a material’s response to a voltage range, as

it provides insight into its electrochemical behavior, voltage
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procedure, reversible nature (diffusion vs surface control), and
energy storage mechanism. After reviewing the electrochemical
findings, the capacitive aspect of total charge storage was
investigated. The power law was utilized to analyze the
electrodes’ charge storage capability. This analysis can be
expressed either as log i = a + b log v or i(V) = av’, where i
represents the applied current density and v the applied
potential window. The intercept and slope of the log i vs log v
plots are used to determine the parameters a and b, which are
constants. The value of b is obtained from the slope of the
linear fit of the log i vs log v plot at a fixed voltage. Figure 7a,b
depict the plot of log i versus log v, showing that the b value
(~0.4) is closer to 0.5. This indicates that ion intercalation is
the dominant mechanism for charge storage. Conversely, a b
value higher than 0.5 suggests that under these conditions, the
capacitive contribution is more prevalent than the intercalation
process. Additionally, the kinetics of charge storage in TPE-
DHTP CMP and Anthra-DHTP CMP have been further
examined using the Trasatti technique. Two different charge
storage processes are found in this analysis: the buildup of
charge on the outside surface of particles (capacitive) is
frequently referred to as Q. (outer surface) and the first is
named Q. (inner surface).

Q = Q—outer + Qbulk

Figure 7c,d show the relation among capacity Q and (v)™*3,
where (v) is the possible scan rate. By finding an intercept of
the graph of Q and (v)™°, it can be done to determine the
value of (Quye) by the equation:

Q = Qouter + Kv_o.s
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where K is a constant, v (mV s™") is the potential scan rate, and
Q (C g™') is the capacity produced by every single CV
sequence. It is determined that the maximum sweep-rate
capacitance of TPE-DHTP CMP and Anthra-DHTP CMP is
137 and 143 C g~".

This figure represents the stored charge because of double-
layer and/or pseudocapacitance capacitive mechanisms. This
process takes place when the potential scan rate gets to the
lowest possible levels, giving the ions sufficient time to
disperse. Plotting 1/Q against (v)*° yields the total charge
(Quota), as seen in Figure 7ef. Based on the relationship:

1 1
—=—— +Kv

Q

0.5

total

However, in this case, we can calculate the stored charge which
is 208 and 952 C g~' for TPE-DHTP CMP and Anthra-DHTP
CMP; respectively. The charge stored increases based on
previously published techniques when the surface contribution
rises, and diffusion limitation takes precedence over the scan
rate. The percentage of surface and diffusion-controlled
contributions at scan rates are thus displayed in Figure 7gh.
Diftusion-controlled faradic yields are 95.4 and 79.5% for
TPE-DHTP CMP and Anthra-DHTP CMP electrodes. In
Figure 8ab, TPE-DHTP CMP and Anthra-DHTP CMP
electrodes underwent galvanostatic charge—discharge (GCD)
tests. The resulting GCD curves, which were modestly bent
and triangular, suggested characteristics of both pseudocapa-
citance and EDLC, consistent with the CV curve data. The
noticeable potential drop at the onset of each discharge curve
in the GCD profiles for the TPE-DHTP CMP and Anthra-
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DHTP CMP electrodes (Figure 8a,b) can be attributed to the
internal resistance within the electrode material.”®”” Figure 8c
compares the GCD curves of DHTP-CMPs at 0.5 A g . It is
observed that the Anthra-DHTP CMP materials exhibited
longer discharge durations than the TPE-DHTP CMP
materials. This suggests excellent capacitive behavior and
good reversibility of charge/discharge cycles, indicating that
the capacitance of the Anthra-DHTP CMP material was
significantly enhanced. We determined the capacitances of the
TPE-DHTP and Anthra-DHTP CMPs samples from their
GCD profiles. 0.5 A g7/, the specific capacitance of Anthra-
DHTP CMP is 121 F gfl, while that of TPE-DHTP CMP is
44 F ¢! (Figure 8c). According to the GCD data (Figure 8d),
the specific capacitances of Anthra-DHTP CMP were 121, 81,
62, 53,41, 32,23,23,and 20 F g_l, respectively [measured at
0.5,1,2,3,5,7,10, 15, and 20 A g~'] are which aligns with the
outcomes of the CV tests.

Continuous cycling experiments are valuable for assessing
the longevity of electrode materials. After undergoing 5000
consecutive charge—discharge cycles, the capacitance stability
(C,) of Anthra-DHTP CMP and TPE-DHTP CMP samples
maintained 79 and 82% of their original capacitance and their
Coulombic efficiency remained close to 100%, as shown in
Figure 9a,b. The existence of heteroatoms and increased
surface area are responsible for these results, which enhance
the electrode—electrolyte interaction, and facilitate the flow of
electrolyte ions.

Furthermore, the energy densities of the materials might be
determined using the Ragone plot (Figure 9c). At specific
power (SP) of 300 W kg™, for both DHTP-CMPs materials,
indicating energy densities of 8.9 and 23.6 Wh kg™' for TPE-
DHTP and Anthra-DHTP CMPs. Anthra-DHTP CMP
exhibits a maximum energy density of 23.6 Wh kg™, attributed
to its enhanced surface area and porosity. These results are
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promising and show the material’s potential for SC
applications. Table S3 presents an examination of DHTP
CMPs electrodes, as well as other porous materials that have
been reported to be employed in supercapacitor applications
(Figure 9d). In this study, we utilized KOH electrolyte (1 M)
to conduct Electrochemical Impedance Spectroscopy (EIS)
measurements on our DHTP-CMPs. Table S4 presents the
fitted data, which allowed us to generate Nyquist plots and
corresponding electrical equivalent circuits for Anthra-DHTP
CMP and TPE-DHTP CMP, depicted in Figure 10a,b. The
EIS data was fitted to circuit models that included parameters
such as Zy (Warburg element), R, (charge transfer
resistance), R, (series resistance), and two constant phase
elements (CPE-EDL, CPE-P). The initial R, values for TPE-
DHTP CMP and Anthra-DHTP electrodes were recorded at
30.7 and 20.9 Q, respectively [Table S4]. These relatively low
ohmic resistance values indicate their superior capacitance.
Additionally, Figure 10c illustrates the frequency-dependent
magnitude Bode plot, highlighting the exceptional capacitive
behavior of these DHTP-CMPs and emphasizing their
potential in energy applications. Furthermore, Figure 10d
displays the frequency-dependent phase angle Bode plot,
revealing knee frequencies that Act as metrics for evaluating
the performance rate of electrode materials. The moderate
knee frequencies observed for TPE-DHTP CMP and Anthra-
DHTP CMP suggest that these DHTP-CMPs could be
effective electrodes for various energy-related applications,
demonstrating both capacitive and resistive characteristics.
Figure S13 displays the results of EIS analysis for the DHTP-
CMPs after 5000 cycles, presented through Nyquist plots
across a frequency range from 100 kHz to 10 mHz. As
observed, there was an observed increase in ion diffusion
resistance, indicating a slowdown in ion diffusion and the slope
of the straight line in the low-frequency region decreased
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(showing a less vertical line), suggesting an increase in ion
diffusion resistance. Additionally, after 5000 cycles, the
semicircles in the high-frequency region (indicating charge
transfer resistance) became more pronounced. These observa-
tions imply a potential loss of contact between the substrate
and active material over multiple cycles. Based on these
findings, Anthra-DHTP CMP demonstrated superior cycling
performance and reversibility compared to TPE-DHTP CMP.

In conclusion, we successfully synthesized two distinct forms of
DHTP-CMPs featuring CH=N and phenolic units, TPE-
DHTP CMP and Anthra-DHTP CMP, using the efficient and
simple Schiff-base condensation reaction. Both DHTP-CMPs
exhibit good thermal stability and porous properties, with
Anthra-DHTP CMP standing out for its exceptional char yield:
68 wt % and T4,y = 505 °C. Compared to TPE-DHTP CMP,
Anthra-DHTP CMP possesses the largest BETg, of 431 m* g™
and the highest CO, absorption capacity at 273 K of 1.85
mmol g~ (8.14 wt %). In electrochemical testing, TPE-DHTP
CMP and Anthra-DHTP CMP showed capacitance values of
44 and 121 F g7, respectively, at 0.5 A g™/, attributed to the
behavior of their heteroatoms and excellent porosity. There-
fore, these results confirm that Anthra-DHTP CMP is an ideal
material choice for energy storage and gas capture applications.
This work demonstrates that the efficient condensation process
used to produce DHTP-CMPs has applications extending
beyond CO, absorption and supercapacitors. Additionally,
these materials show potential for use in photocatalysis, iodine
and dye capture, and other related fields.
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