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A B S T R A C T   

Three different types of organic/inorganic hybrids are synthesized through the hydrosilylation of the double- 
decker silsesquioxane (DDSQ) with divinylbenzene (DVB), 3,13-divinyl double-decker silsesquioxane (DV- 
DDSQ) and cubic octavinylsilsesquioxane (OVS) individually to form DVB-DDSQ, DVDDSQ-DDSQ, and OVS- 
DDSQ, was achieved through Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spec-
troscopy. Thermal stability using TGA analyses, it was observed that the OVS-DDSQ hybrid possesses the highest 
thermal stability with Td10 of 596 ◦C and a char yield of 82.2 wt% because of the improvement of the cross- 
linking structure and increased density within the OVS-DDSQ hybrid. Furthermore, after carbonization to in-
crease the surface area of OVS-DDSQ to form a microporous carbon (C-OVS-DDSQ) hybrid framework, it displays 
electrochemical performance with specific capacitances of 146 F g− 1 at 0.5 A g− 1, benefiting from its high surface 
area of 169 m2 g− 1, which facilitated efficient electron transfer and the presence of a lot of active sites on the 
electrode surface. Notably, the capacitance retention of the C-OVS-DDSQ hybrid remained excellent, reaching 98 
% at 20 A g− 1 even after 5000 cycles, suggesting its remarkable stability.   

1. Introduction 

Polymer nanocomposites based on polyhedral oligomeric silses-
quioxane (POSS) consist of the polymer matrix incorporating POSS units 
[1–8]. POSS is the nanoscale cage-like structure of a unique class 
composed of Si and O atoms, which could be functionalized with various 
organic groups such as epoxy, amine, acrylate, phenolic, and vinyl units 
[9–17]. The POSS units should be dispersed well into the polymer matrix 
in polymer POSS nanocomposites that could create hybrid properties 
featuring the advantage properties of both components. For example, 
the incorporation of POSS units into the polymers could provide several 
advantages including high thermal, mechanical, and barrier properties, 
as well as dimensional stability and flame retardancy because of its 
intrinsic inorganic silica cage structure [18–25]. In general, various 
approaches could be dispersed the POSS units in the polymer matrix 
including solution blending, melting blends, and in-situ polymerization 
from a covalent bond or the specific interactions such as hydrogen 

bonding and dipole-dipole interaction between the POSS units and the 
polymer matrix [1,6,7,26–30]. Until now, the covalent bonding between 
polymer and POSS units is the most efficient approach to synthesizing 
polymer/POSS nanocomposites [1]. 

In our previous studies [1,6,7,31], we summarized the architectures 
of polymer/POSS nanocomposites with different topologies, which are 
strongly dependent on the functionality of the POSS units. Using a 
mono-functionalized POSS unit is the case where POSS units are posi-
tioned at the side chain or chain end of polymer/POSS nanocomposites 
[1,12,30]. In addition, the incorporation of multi-functionalized POSS 
units within the polymer matrix could form insoluble cross-linked 
structures and sometimes form porous frameworks [32–35]. Using 
bi-functionalized POSS units is another approach for the development of 
the main chain type of polymer/POSS nanocomposites such as poly-
imide, polybenzoxazine, polyurethane, and diblock copolymer system 
[1,31,36–39]. The double-decker silsesquioxane (DDSQ) derivatives are 
the well-known bi-functionalized POSS units that could be incorporated 
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into the main chain polymers with other bi-functionalized units and it 
also could form the crosslinking structures with multi-functionalized 
units [40–43]. As a result, the combination of DDSQ derivatives for 
the main chain polymer or crosslinking structure allows for the creation 
of hybrid materials, making them for various applications such as 
coating, composites, and electronic devices [40–43]. 

In recent years, environmental problems have attracted everyone’s 
attention. The burning of a large amount of petroleum fuels has caused 
environmental problems and climate change [44]. Therefore, scientists 
have been actively searching for innovative and efficient renewable 
energy storage alternatives [44,45]. Electrochemical energy storage has 
become one of the most convenient options among various solutions. 

Scheme 1. Synthesis of DDSQ-based organic/inorganic hybrids from (a) phenyltrimethoxysilane, (b) DD-Na, (c) DDSQ, (d) DV-DDSQ, and then to form (e) DVB- 
DDSQ from DDSQ with DVB, (f) DVDDSQ-DDSQ from DDSQ with DV-DDSQ, and (g) OVS-DDSQ from DDSQ with OVS by hydrosilyation. 

Fig. 1. The synthesis of DVB-DDSQ organic/inorganic hybrid from DDSQ with DVB and their corresponding (a) FTIR, (b) 1H, (c) 13C, and (d) 29Si NMR spectra.  
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These include rechargeable batteries, capacitors, and supercapacitors 
(SCs) [46–50], all of which have advantages and properties such as 
safety, reasonable capacity strength, fast charge/discharge rates, and 
long-cycle stability [51–55]. SCs, in particular, offers the added benefit 
of cheapness and long lifespan [56,57], making it show great promise 

and progress in this field. According to the way of storing charge, 
supercapacitors can be divided into pseudocapacitors and electric 
double-layer capacitors (EDLC) [58–61]. Pseudocapacitors store energy 
by reversible redox reactions between electrolyte electrode materials 
and electrode materials [62,63]. On the other hand, EDLCs mainly store 
energy through physical procedures involving the adsorption/de-
sorption of charged ions at the interface of the electrode-electrolyte [64, 
65]. Therefore, EDLCs require a high surface area to achieve high 
capacitive performance [66,67]. Porous carbons have the advantages of 
high specific surface area, good electrical conductivity, and high sta-
bility [68–71]. Therefore, it has attracted more and more attention in 
energy applications [72–75]. In addition, many porous carbons have 
been developed, such as hollow carbon nanospheres [76], order-
ed/disordered mesoporous carbons [77], and ordered/disordered mac-
roporous carbons [78]. But most of these porous carbons are prepared 
through templating methods [79] or high-temperature sintering [80]. 
Therefore, frameworks with higher thermal performance are required to 
be fabricated as precursors. Many studies have also confirmed that POSS 
is a porous polymer prepared as a building block, that possesses a high 
specific surface area and excellent thermal stability [81–88]. In this 
work, we synthesized three organic-inorganic hybrid materials with 
highly thermally stable and electrochemical responses incorporating 
two different types of POSS (DDSQ and OVS) through hydrosilylation. 
To understand the model reaction of DDSQ with OVS to form a hybrid 
framework of OVS-DDSQ, the other two different types of 
organic-inorganic hybrids were also synthesized through the hydro-
silylation of the DDSQ with divinylbenzene (DVB) and DV-DDSQ to form 
main chain type of DVB-DDSQ and DVDDSQ-DDSQ hybrids, respec-
tively. In addition, to enhance the electrochemical performance of 
OVS-DDSQ carbonization was employed to increase its surface area and 

Fig. 2. The synthesis of DVDDSQ-DDSQ organic/inorganic hybrid from DDSQ with DV-DDSQ and their corresponding (a) FTIR, (b) 1H, (c) 13C, and (d) 29Si 
NMR spectra. 

Fig. 3. MALDI-TOF mass spectrum of DVDDSQ-DDSQ hybrid.  
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it could provide high capacitance and capacitance retention. The 
detailed chemical structures, thermal properties, and electrochemical 
performance of these three DDSQ-derivative hybrids are also discussed 
in this study. 

2. Experimental section 

2.1. Materials 

Divinylbenzene (DVB), phenyltrimethoxysilane, methyl dichlor-
osilane, vinylmethyl dichlorosilane, sodium hydroxide (NaOH), and 
platinum divinyltetramethyldisiloxane (Pt (dvs)) complex were ac-
quired from Sigma-Aldrich. Octavinylsilsesquioxane (OVS) was pur-
chased from Hybrid Plastic Company. Double-decker silsesquioxane-Na 
(DDNa) (Scheme 1(b)) and double-decker silsesquioxane (DDSQ) 
(Scheme 1(c)), and DV-DDSQ (Scheme 1(d)) were synthesized in our 
previous studies and the synthesis details were provided in supporting 
information [17,39]. 

2.2. Synthesis of DVB-DDSQ, DVDDSQ-DDSQ and OVS-DDSQ organic/ 
inorganic hybrids 

DDSQ (3 g, 2.6 mmol) with divinylbenzene (0.338 g, 2.6 mmol), DV- 
DDSQ (3.13 g, 2.6 mmol), or OV-POSS (0.41 g, 0.65 mmol) and toluene 
(40 mL) was stirred for 30 min with a reflux condenser in a flask. Frozen 
pumping was performed three times to remove any impurities. After-
ward, Pt (dvs) (0.3 mL) was slowly added dropwise to the mixture, 

which was subsequently heated under a nitrogen atmosphere at 80 ◦C 
for 72 h. Once the reaction was complete, the solid was filtered out of the 
mixture, and the filtrate was concentrated using vacuum distillation. 
The resulting residue was subjected to an oven treatment, producing in 
the formation of three different pale-yellow solids identified as DVB- 
DDSQ (2.7 g, yield: 80 %), DVDDSQ-DDSQ (5.5 g, yield: 89 %), and 
OVS-DDSQ (2.4 g, 70 %) as shown in Scheme 1(e), 1(f) and 1(g), 
respectively. 

2.3. The preparation of porous carbon from OVS-DDSQ by carbonization 

The OVS-DDSQ organic/inorganic hybrid was first placed in a 
tubular furnace from room temperature to 600 ◦C at a heating rate of 
2 ◦C min− 1 under N2 atmosphere. The mixture of OVS-DDSQ was stirred 
with aqueous KOH (OVS-DDSQ/KOH = 1/2) for 1 day at room tem-
perature. Afterward, the water was removed, and the carbon powder 
prepared from the previous step was subjected to further carbonization 
at 800 ◦C in a tubular furnace for 2 h under N2 atmosphere. Finally, the 
porous carbon was washed by the deionized H2O several times until the 
pH to 7 and put in the oven to obtain the black powder. 

3. Results and discussion 

3.1. Synthesis of DVB-DDSQ organic/inorganic hybrid 

The synthesis of DVB-DDSQ organic/inorganic hybrid used DDSQ 
with DVB by hydrosilylation as shown in Scheme 1(d) as the model 

Fig. 4. The synthesis of OVS-DDSQ organic/inorganic hybrid framework from DDSQ with OVS and their corresponding (a) FTIR, (b) 13C, and (c) 29Si NMR spectra, 
and (d) TGA analyses. 
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reaction to prepare DVDDSQ-DDSQ and OVS-DDSQ. Fig. 1(a) displays 
their corresponding FTIR spectra, where the strong absorption at 1105 
cm− 1 could be attributed to the Si–O–Si units, while the absorption at 
1264 cm− 1 is due to the Si–CH3 unit for pure DDSQ and DVB-DDSQ 
hybrid. Notably, the signal at 2165 cm− 1, characteristic of pure DDSQ, 
disappeared after hydrosilylation with DVB to form a DVB-DDSQ hybrid. 
Additionally, the absorption at ca 0.2964-2810 cm− 1, representing 
aliphatic CH, and the aromatic C––C absorption at ca. 1600 cm− 1 from 
the DVB unit, increased after hydrosilylation, indicating the successful 
formation of the DVB-DDSQ hybrid. In addition, Fig. 1(b)-1(d) also 
provides 1H, 13C, and 29Si NMR spectra of pure DDSQ and DVB-DDSQ 
hybrid. The signal of Si–H and Si–CH3 units were observed at 4.68 
ppm and 0.15 ppm, respectively, for pure DDSQ (Fig. 1(b)). After the 
hydrosilylation, the Si–H peak at 4.68 ppm disappeared and the 
aliphatic protons and carbons appeared at ca. 1–2.75 ppm in 1H NMR 
(Fig. 1(b)) and ca. 14–38 ppm in 13C NMR (Fig. 1(c)), respectively. 
Additionally, the aromatic protons and carbons from the DVB unit were 
also detected at ca. 6.64 ppm in 1H NMR (Fig. 1(b)) and ca. 114 and ca. 
145 ppm in 13C NMR (Fig. 1(c)). Finally, Fig. 1(d) shows 29Si NMR 
spectra, where the Si–O–Si unit was located at − 78.16 and − 79.88 ppm, 
representing the different environments of Si atoms within the DDSQ 
cage. Most importantly, the Si–H peak at − 33.37 ppm, present in pure 
DDSQ, also disappeared after hydrosilylation to form a DVB-DDSQ 
hybrid. In its place, a new signal at 18.98 ppm corresponded to the 
new Si–CH2 unit [86,87]. Furthermore, the DVB-DDSQ hybrid also 
possesses high thermal properties and stability, which exhibited a Tg 
value of 260 ◦C (Fig. S1), Td10 = 558 ◦C, char yield = 74.0 wt% that are 
significantly higher than pure DDSQ (Td10 = 380 ◦C, char yield = 5.6 wt 
% in Fig. S2(a)). All results confirmed the successful synthesis of the 
DVB-DDSQ hybrid and its molecular weight also could be determined by 
using GPC analysis (Mn = 17,900 g/mol, PDI = 1.38). 

3.2. Synthesis of DVDDSQ-DDSQ organic/inorganic hybrid 

DVDDSQ-DDSQ organic/inorganic hybrid was synthesized using 
hydrosilylation of DDSQ with DV-DDSQ as shown in Scheme 1(e) and 
their corresponding FTIR and 1H spectra as shown in Fig. 2(a) and (b). 
Similarly, the Si–H peak at 2165 cm− 1 in FTIR spectra and 4.68 ppm 
signal in 1H NMR of pure DDSQ disappeared. In addition, the vinyl 
protons of DV-DDSQ observed at 6.2 and 5.9 ppm also disappeared,88 

while the aliphatic carbons were still present at ca. 7–46 ppm in 13C 
NMR spectra (Fig. 1(c)) after hydrosilylation to form DVDDSQ-DDSQ 
hybrid. Furthermore, Fig. 2(d) displays their corresponding 29Si NMR 
spectra, where the Si–O–Si unit was almost located at a similar chemical 
shift at ca. − 78.16 and − 79.88 ppm for all three DDSQ derivatives. 
Firstly, the peak at − 33.37 ppm due to the Si–H unit vanished and the 
new signal at − 17.74 ppm was corresponding to a new Si–CH2 unit. 
Secondly, the intensity of the Si–C––C unit of pure DV-DDSQ located at 
− 31.87 ppm was decreased after hydrosilylation to form a DVDDSQ- 
DDSQ hybrid when compared with pure DV-DDSQ. The remaining 
Si–C––C unit of the DVDDSQ-DDSQ hybrid indicates the presence of the 
chain end group of DV-DDSQ derivative and thus we also used GPC to 
determine the molecular weight of DVDDSQ-DDSQ hybrid (Mn = 7900 
g/mol; PDI = 1.13), indicating the presence of ca. 6 DDSQ units in this 
main chain type of DVDDSQ-DDSQ hybrid. 

In addition, we also used MALDI-TOF mass spectra to determine the 
chemical structure and molecular weight of this DVDDSQ-DDSQ hybrid 
as shown in Fig. 3. The mass difference between the signals at m/z 
3585.08 (DP = 3) and m/z 4755.40 (DP = 4) was ca. 1170 g/mol, which 
is corresponding to the molecular weight of each DDSQ derivative, 
indicating a short methylene bridge between each DDSQ cage [89,90]. 
Most importantly, the higher degree of polymerization (DP) such as 5 
and 6 are also observed for this DVDDSQ-DDSQ hybrid copolymer, 
further confirming the successful synthesis as supported by all charac-
terizations used. 

Fig. 5. (A) TGA thermal analyses and chemical structure of (b) DVB-DDSQ, (c) DVDDSQ-DDSQ, and (d) OVS-DDSQ hybrids.  
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Furthermore, the DVDDSQ-DDSQ organic/inorganic hybrid also 
displayed remarkable thermal stability where the Tg value is 355 ◦C 
(Fig. S1), Td10 = 573 ◦C, char yield = 79.2 wt% (Fig. S2(b)). The higher 
concentration of DDSQ in DVDDSQ-DDSQ compared with DVB-DDSQ 
hybrid could possess higher thermal stability as expected. This is due 
to the incorporation of the more rigid inorganic DDSQ segment that 
replaces the only benzene ring in DVB-DDSQ which could increase 
thermal stability. Fig. S3 shows SEM and EXD analyses of DVB-DDSQ 
and DVDDSQ-DDSQ hybrids, indicating that no macro-phase separa-
tion and the DDSQ was dispersed well for both hybrids since the Si and 
O-mapping homogeneously on the surface. Furthermore, the weight 
percentage of Si and O atoms of the DVDDSQ-DDSQ hybrid is higher 
than the DVB-DDSQ hybrid as shown in Table S1 resulting in higher 
thermal stability as expected. Actually, the high thermal stability of 
DVDDSQ-DDSQ organic/inorganic hybrid makes it suitable for potential 
applications in thermal insulation or high-performance polymeric 
materials. 

3.3. Synthesis of OVS-DDSQ organic/inorganic hybrid 

To further increase the thermal properties of the DDSQ-based hybrid, 
we incorporated two types of POSS nanoparticles: octavinyl POSS (OVS) 
and DDSQ. This resulted in the formation of OVS-DDSQ organic/inor-
ganic hybrid as the crosslinking structure through hydrosilylation as 
displayed in Scheme 1(g). Because of the crosslinking structure of the 
OVS-DDSQ hybrid, the chemical structure only could be determined by 

solid-state FTIR, 13C, and 29Si NMR analyses as shown in Fig. 4(a)–4(c). 
Similar to previous hybrids, the Si–H peak at 2165 cm− 1 in FTIR spectra 
(Fig. 4(a)) and the peak at − 33.37 ppm attributed to the Si–H unit in 29Si 
NMR spectra (Fig. 4(c)) were both disappeared. In addition, the vinyl 
carbons of OVS observed at 137.97 and 129.20 ppm corresponding to 
Si–CH––CH2 and Si–CH––CH2 units also disappeared, while the aliphatic 
carbons were still present at ca. 57.57–65.65 ppm in 13C solid-state NMR 
spectra (Fig. 4(b)) after hydrosilylation to form OVS-DDSQ hybrid. 
Furthermore, the 29Si NMR analysis of OVS displayed a single signal of 
Si–O–Si unit at − 80.65 ppm due to its symmetric structure as displayed 
in Fig. 4(c). After hydrosilylation to form OVS-POSS hybrid, the signals 
were observed at − 21.22, − 65.98, and − 78.71 ppm in the 29Si solid- 
state NMR analyses, which are ascribed to the Si–CH、Si–O–Si (T2) 
and Si–O–Si (T3) units in the hybrid framework. According to these 
spectral analyses conducted previously provided the confirmation of the 
successful synthesis of the OVS-DDSQ hybrid framework. Furthermore, 
Fig. 4(d) presents the corresponding TGA analyses of DDSQ, OVS, and 
OVS-DDSQ hybrid where OVS only exhibited Td10 = 247 ◦C, and char 
yield = 3.4 wt%. In contrast, the rigid OVS-DDSQ hybrid framework 
displayed the highest thermal stability of Td10 = 596 ◦C, and char yield 
= 82.2 wt%. 

Fig. 5 summarizes the TGA results of DVB-DDSQ, DVDDSQ-DDSQ, 
and OVS-DDSQ hybrids, where Td10 values are 558, 573, and 596 ◦C, 
and char yields are 74.0, 79.2, and 82.2 wt%, respectively. Compara-
tively, the DVB-DDSQ hybrid possesses the lowest thermal stability since 
the benzene unit is susceptible to pyrolysis compared to the DDSQ and 

Fig. 6. (A) N2 adsorption/desorption isotherms (b) pore size patterns of the C-OVS-DDSQ hybrid and (c–d) TEM (e–f) SEM (g–h) C-, (i–j) Si-, (k–l) O-, and mappings 
of OVS-DDSQ (c, e, g, i, and k) and C-OVS-DDSQ (d, f, h, j, l). The scale bar in TEM and SEM images was 20 nm and 1 μm: respectively. 
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Fig. 7. (A–b) CV, (c–d) GCD curves of OVS-DDSQ (a, c) and C-OVS-DDSQ hybrid (b, d), (e) capacitance performance of OVS-DQ and C-OVS-DDSQ, and (f) 
capacitance retention of C-OVS-DDSQ hybrid framework. 
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OVS units. In addition, the OVS-DDSQ hybrid, which incorporates two 
types of POSS nanoparticles and utilizes an octa-functionalized group, 
shows the highest thermal stability as expected. This result could be 
attributed to the enhanced cross-linking structure and increased density 
within the OVS-DDSQ hybrid. 

3.4. The preparation of porous carbon from OVS-DDSQ by carbonization 

Indeed, the OVS-DDSQ hybrid, with its crosslinking structure with 
porous property, may have the potential application in electrochemical 
tests. Furthermore, the OVS-DDSQ hybrid has the advantage of its high 
thermal stability, which makes its structure not easy to collapse and 
remains intact even at high temperatures. This characteristic opens up 
the increase of its specific surface area through carbonization in order to 
improve its electrochemical performance. We can expect that the 
organic components could be removed by subjecting the OVS-DDSQ 
hybrid to carbonization and then forming a C-OVS-DDSQ hybrid 
framework, leaving behind a carbonaceous framework [41,42]. This 
carbonized structure usually could provide a high surface area, which is 
beneficial for electrochemical application since a high surface area al-
lows for better accessibility of the active site and enhances the charge 
transfer kinetics, ultimately improving the electrochemical performance 
of this hybrid [91,92]. The XPS analysis of the porous C-OVS-DDSQ 
hybrid framework [Fig. S4] revealed prominent peaks at specific bind-
ing energies: 103.5 eV for Si2p, 284.21 eV for C1s, and 532.09 eV for 
O1s. Furthermore, XRD) analysis, as shown in Fig. S5, revealed that the 
porous C-OVS-DDSQ hybrid framework displayed two prominent peaks 
at 20.7◦ and 37◦, which can be attributed to the (002) and (101) dif-
fractions of graphitic crystalline structures, respectively. The porosity 
properties of the porous C-OVS-DDSQ hybrid framework were 
confirmed by N2 adsorption-desorption isothermal analyses at 77 K and 
1 bar as displayed in Fig. 6. The C-OVS-DDSQ hybrid exhibited the type 
II isotherms based on the IUPAC classification. It has a sharp N2 uptake 
at both low and high relative pressure (P/P0), corresponding to the 
presence of both micropore and mesopore characteristics. In Fig. 6(a)– 
(b), the C-OVS-DDSQ hybrid framework provides a SBET surface area of 
169 m2 g− 1 and the pore size diameters based on nonlocal density 
functional theory (NL-DFT) were ca. 2.2 and 5.4 nm, respectively. The 
morphology of OVS-DDSQ and C-OVS-DDSQ hybrids was confirmed by 
FE-SEM and HR-TEM as shown in Fig. 6(c)-6(f). The SEM image of 
OVS-DDSQ exhibited small spheres with a lumpy and irregular structure 
(Fig. 6(c)) and the TEM image also showed the absence of long-range 
ordering of this hybrid (Fig. 6(e). After carbonization to form the 
C-OVS-DDSQ hybrid, the SEM image shows the lump structure and 
transforms into smaller lumps (Fig. 6(f)) and the TEM image also dis-
plays the porous nature character (Fig. 6(d). In addition, the carbon 
content was significantly increased after carbonization based on EDX 
analyses as shown in Fig. 6(g)-6(j) and summarized in Table S1, indi-
cating the carbonaceous framework was obtained after removing the 
organic component. 

The electrochemical performance of OVS-DDSQ and porous C-OVS- 
DDSQ hybrid frameworks were estimated through cyclic voltammetry 
(CV) and galvanostatic charge-discharge (GCD) analyses in 1 M KOH 
aqueous solution using the three-electrode system. The CV curves were 
determined at various scan rates of 5–200 mV s− 1 within the potential 
window from 0 to − 1 V (vs. Hg/HgO) as displayed in Fig. 7(a)–(b). The 
CV curves of the OVS-DDSQ hybrid (Fig. 7(a)) exhibited rectangular-like 
shapes with humps, indicating a capacitive response originating from 
EDLC, which is relatively small. The humps in the rectangular-like shape 
present the capacitive response of pseudocapacitance and it is attributed 
to the electron-rich phenyl rings in the structure. 

After the carbonization, the C-OVS-DDSQ hybrid provides a much 
higher area for the EDLC at all the tested scan rates (Fig. 7(b)). The 
enhanced performance of EDLC is attributed to the higher surface area 
for electron transfer and the presence of more active sites on the elec-
trode surface from material after carbonization. Fig. 6(c) and (d) show 

the GCD curves of OVS-DDSQ and C-OVS-DDSQ hybrids, recorded at 
different current densities. Both OVS-DDSQ and C-OVS-DDSQ hybrids 
provided the capacitances of 45.66 F g− 1 and 146 F g− 1 at 0.5 A g− 1 in 
Fig. 6(e). Moreover, the curves of these two samples were triangular in 
shape with a slight bend, suggesting both EDLC and pseudocapacity 
characteristics. The capacitance of the C-OVS-DDSQ hybrid framework 
is higher than that of OVS-DDSQ primarily due to the presence of carbon 
in the hybrid structure. The incorporation of carbon-based materials 
introduces additional charge storage sites and enhances the overall 
capacitance of the framework. This increased capacitance is attributed 
to the unique properties of porous carbon, such as its high surface area, 
conductivity, and ability to form double-layer capacitors. Consequently, 
the C-OVSDDSQ hybrid framework offers improved capacitance per-
formance compared to the OVS-DDSQ framework. Finally, the capaci-
tance retention of the C-OVS-DDSQ hybrid shows a high stability of 98.5 
% after 5000 cycles (Fig. 6(f)); however, the OVS-DDSQ hybrid did not 
display any stability in this particular measurement. Overall, the 
carbonization of the OVS-DDSQ hybrid demonstrates higher electro-
chemical performance, increasing capacitance and enhanced stability, 
and a large area for EDLC. 

4. Conclusions 

Three different types of organic-inorganic hybrids of DVB-DDSQ, 
DVDDSQ-DDSQ, and OVS-DDSQ were synthesized simultaneously by 
using DDSQ to connect with DVB, DV-DDSQ, and OVS. Both main chain 
types of DVB-DDSQ and DVDDSQ-DDSQ display high Tg values (260 and 
355 ◦C), Td10 value at 550 ◦C, and char yield upon 74 wt%. To further 
increase the thermal stability, the OVS was incorporated into the DDSQ to 
form a crosslinked structure of OVS-DDSQ hybrid framework also through 
hydrosilylation, which displayed the highest thermal stability (Td10 =

596 ◦C and char yield = 82.2 wt%). This result could be attributed to the 
enhanced cross-linking structure and increased density within the OVS- 
DDSQ hybrid. The carbonization of the OVS-DDSQ hybrid to form the 
C-OVS-DDSQ hybrid demonstrates the higher electrochemical capaci-
tances of 146 F g− 1 at 0.5 A g− 1 and shows the capacitance retention with 
the high stability of 98.5 % after 5000 cycles because of its high surface 
area of 169 m2 g− 1 for electron transfer and the presence of more active 
sites on the electrode surface from the material. 
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