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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph- 
BSu CMPs were synthesized. 

• The TPE-Ph-BSu CMP, displayed excel-
lent Td10 of 535 ◦C and a char yield of 
73 wt%. 

• The TPE-Ph-Th CMP, which had SBET of 
67 m2 g− 1 and a pore size of 2.0 nm. 

• Both TPE-Ph-Tha and TPE-Ph-BSu CMPs 
demonstrated excellent supercapacitive 
activity. 

• The TPE-Ph-BSu CMP-based fluo-
rophores could be used for the detection 
of PNP.  
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A B S T R A C T   

In this study, we successfully used the Suzuki-Miyaura reaction to prepare three novel conjugated microporous 
polymers (CMPs) that include tetraphenylethene (TPE): TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu. Using 
methods like FTIR and solid-state NMR, we examined the chemical composition and functional groups in the 
TPE-Ph CMPs. The TPE-Ph-BSu CMP’s thermal characteristics were also examined, and they showed remarkable 
features with a decomposition temperature (Td10) of 535 ◦C and a char yield of 73 wt%. We also looked at TPE- 
Ph-Th CMP, which had a pore size of 2.0 nm and a surface area (SBET) of 67 m2 g− 1. We carried out 
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photoluminescence (PL) and electrochemical investigations to evaluate the potential of TPE-Ph CMPs for 
supercapacitor applications and their capability to detect p-nitrophenol (PNP). According to our electrochemical 
investigation, the TPE-Ph-Tha and TPE-Ph-BSu CMPs both exhibited exceptional capacitance, reaching 51 and 
52 F g− 1 at a current density of 0.5 A g− 1, respectively. Furthermore, even after 5000 cycles, these CMPs still 
retained 80% of their capacitance, demonstrating their remarkable capacitance retention. In conclusion, syn-
thetic TPE-Ph CMPs have several benefits, including outstanding electrochemical performance and thermal 
stability. Additionally, they successfully detect PNP using fluorescence-based sensing without interference, 
making them adaptable materials suited for a variety of applications, including the detection of pollutants (as 
PNP has shown) and the usage of supercapacitors.   

1. Introduction 

The great demand of energy to bear the economic growth nowadays 
directly induces climate change and environmental pollution due to the 
majority of energy coming out from fossil fuels. To overcome this situ-
ation, more and more research is on how to use natural power such as 
solar, tidal, or wind energy to replace fossil fuels [1–6]. Those natural 
resources have a high potential to satisfy our demand for energy. 
However, it has a vital problem: most of nature’s power cannot produce 
energy 24 h a day. It may be limited by weather, time, and geographical 
conditions. As a result, it is critical to conceive an efficient device to 
store energy and solve the present situation [7,8]. Supercapacitors (SCs) 
are one of the most motivated electronic appliances in recent years 
because of their outstanding advantages at storing energy, higher power 
density, cycle stability, and longer cycling life, the energy density of 
supercapacitors is smaller than the secondary battery (Rechargeable 
battery) [9–11]. Furthermore, conventional dielectric capacitors and 
supercapacitors differ in terms of their energy storage mechanisms, 
energy density, charge-discharge rates, cycle stability, and the duration 
for which they can store energy. Supercapacitors are favored for their 
high-power capabilities and cycle stability, while conventional capaci-
tors are preferred for applications requiring longer energy storage du-
rations [9–11]. However, the main defect in SCs is the small working 
potential window. The electrolyte decomposes when the voltage that is 
provided is too high. Besides, the ability of the supercapacitor is 
intensely relative to the electrode materials. In the past, inorganic ma-
terials were the widest application in supercapacitors, but they greatly 
impacted the environment. In search of more suitable material to 
overcome those shortcomings, the development of polymer will play a 
critical role in supercapacitors [12–26]. Porous organic polymers (POPs) 
have been researched vigorously for decades. It presents wide applica-
tions including pollutant removal, hydrogen evolution, metal ions 
sensing, energy storage, CO2 capture, photoluminescence, and the pos-
itive electrode materials in lithium-sulfur batteries, due to their high 
SBET, variable pore diameters, chemical inertness, improved electrical 
conductivity and low density than inorganic materials [27–40]. If used 
the porous diameter of materials distinguishes the materials can be 
classified into three types, The International Union of Pure and Applied 
Chemistry (IUPAC) defines three types of porous materials: microporous 
materials with a diameter of less than 2 nm, mesoporous materials with 
a diameter of 2–50 nm, and macroporous materials with a diameter of 
more than 50 nm [41–46]. Another method often used for classification 
is crystallinity, we can divide into two sorts, one is crystalline structure 
such as covalent organic frameworks (COFs) [47,48] and the other is 
amorphous disorder structure like hyper-crosslinked polymers (HCPs) 
[49], covalent triazine frameworks (CTFs) [50], and CMPs. CMPs have 
exceptional electrochemical performance and luminous capabilities 
because of their pi-conjugated structure with redox activity. Further-
more, CMPs can be synthesized by a variety of methods such as oxidative 
polymerization, Sonogashira− Hagihara, and Yamamoto-coupling, and 
they lead to CMPs having a multiplicity structure and properties 
[51–54]. The straightforward and dependable chemical composition of 
TPE makes it a promising ingredient for the development of luminous 
materials. The McMurry coupling process offers a convenient method for 

producing pristine TPE and its various topological structures. TPE is an 
archetypal luminogen having a straightforward molecular structure and 
a propeller-like conformation that allows it to be recognized as a typical 
AIE luminophore. TPE and its derivatives both displayed poor fluores-
cence emission in the solution state but significant fluorescence emission 
in the aggregation state [55–60]. Mousa et al. presented findings on 
Py-PDT POP, showcasing an impressive capacitance of 28 F g− 1 [61]. 
Duan group prepared CoPc-CMP with a capacitance of 13.8 F g− 1 [62]. 
Mohamed et al. revealed that Py-BSU CMP had a capacitance of 38 F g− 1 

at 0.5 A g− 1 [63]. Kuo et al. discovered that PE-Ph-Pery and TPA-Ph-Pery 
CMPs exhibited capacitances of 82 and 68 F g–1, respectively [64]. Our 
group uncovered that 3D-Try-PyT CMP demonstrated its highest 
capacitance at 0.5 A g− 1, reaching a value of 66 F g− 1 [65]. To our 
current understanding, we have not encountered any previous instances 
of TPE-based CMPs (TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs) 
being synthesized or employed in the context of energy storage and their 
application in sensing for PNP. In this investigation, utilizing the 
Suzuki-Miyaura reaction, we successfully synthesized three novel CMPs 
with the names TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu. These CMPs 
all include a TPE unit. We analyzed the TPE-Ph CMPs framework using 
methods such as FTIR and solid-state NMR in order to learn more about 
the chemical structure and functional groups that are present. To assess 
the thermal character of the TPE-Ph-BSu CMP, we also performed 
thermogravimetric studies (TGA). This material demonstrated good 
properties, having a Td10 of 535 ◦C with a char yield of up to 72 wt%. The 
SBET and pore size of the TPE-Ph-Th CMP were both 67 m2 g− 1. We 
conducted photoluminescence (PL) and electrochemical studies to 
evaluate the benefits of TPE-Ph CMPs in detecting p-nitrophenol and SCs 
applications. According to our electrochemical investigation, the 
TPE-Ph-Tha and TPE-Ph-BSu CMPs both displayed remarkable capaci-
tance of 51 and 52 F g− 1 at 0.5 A g− 1, respectively. Both TPE-Ph-Tha and 
TPE-Ph-BSu CMPs retained 80% of their capacitance for 5000 cycles, 
further demonstrating the extraordinary capacitance retention of these 
CMPs precursors. To sum up, the materials made from synthetic TPE-Ph 
CMPs have a number of benefits, including outstanding electrochemical 
performance and thermal stability. These characteristics make them 
intriguing materials for a variety of uses, including the detection of 
p-nitrophenol and the use of supercapacitors. 

2. Experimental section 

2.1. Materials 

Dichloromethane (DCM), pyrene (Py), 1,4-phenylenediboronic acid 
(1,4-Ph-B(OH)2), thianthrene (Th) bromine solution (Br2), p-nitrophenol 
(PNP), potassium carbonate (K2CO3), and Pd(PPh3)4 were purchased 
from Sigma–Aldrich. Tetraphenylethene (TPE) and 1,3,6,8-tetrabromo-
pyrene (Py-Br4), were synthesized using previously reported procedures 
[33,37]. 

2.2. Synthesis of Tetrakis(4-bromophenyl)ethylene (TPE-Br4) 

DCM (94 mL), acetic acid (AcOH, 31 mL), and TPE (2.5 g, 7.53 
mmol) were added into 250 mL of the two-necked round bottom flask 
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and soaked in salt-ice-water (0 ◦C) for a while. Subsequently, Br2 (2.5 g, 
31.3 mmol) was added dropwise. After returning to ambient tempera-
ture, the solution was stirred overnight. In order to obtain the product, 
the mixture was washed well with Na2S2O3 and used DCM to extract 
before being dried with MgSO4. Next, the solids were recrystallized 
several times with EtOH to purify and obtain a white solid (4.5 g). 

2.3. Synthesis of Synthesis of 2,3,7,8-tetrabromothianthrene (Th-Br4) 

Th (3.24 g, 15 mmol), excess Br2 (15 mL), and AcOH (60 mL) were 
added directly to a 250 mL round-bottom flask while being stirred at 
room temperature. At 80 ◦C, the mixture would be refluxed for 16 h. The 
excess Br2 was then carefully rinsed away with deionized water (DI 
water) after cooling to room temperature. This produced white powder. 
Re-crystallizing the obtained solid from xylene would yield pure Th-Br4 
(2 g, 60%, Scheme S1). FTIR (KBr, Fig. S1): 3064 (aromatic C-H), 1552 
(C––C), 590 (C-Br). 1H NMR (500 MHz, Fig. S2): 7.98. 

2.4. Synthesis of 2,8-dibromothianthrene (Tha-Br2) 

Th (3.24 g, 15 mmol), Br2 (6 mL), and AcOH (60 mL) were inserted 
into a 250 mL round-bottom flask. The combination was heated to 80 ◦C 
for 16 h. After cooling down to room temperature, add deionized water 
(DI water) into the solution to form a white solid. The obtained solid was 
then rinsed with 5% of NaHCO3 sodium hydrogen carbonate solution 
and recrystallized from DCM and methanol to acquire pure Tha-Br2 
(2.76 g, 85%, Scheme S2). FTIR (Fig. S3): 3057.41 (C-H aromatic). 1H 
NMR (500 MHz, Fig. S4): 7.69, 7.62, 7.32. 13C NMR (125 MHz, Fig. S5): 
137.64–122.49. 

2.5. Synthesis of 2,8-dibromothianthrene-5,5,10,10-tetraoxide (BSu-Br2) 

At room temperature with stirring in 150 mL of a two-necked round- 
bottom flask was added Tha-Br2 (1.87 g, 5 mmol), AcOH (40 mL), and 
H2O2 (50 mL). The combination was treated at 90 ◦C and stirred for 24 h. 
The obtained white solid from the filter was washed with 5% of NaHCO3 
several times. In order to acquire a high-purity monomer, the solid un-
dergoes recrystallization from DCM and methanol (1.4 g, 80%, Scheme 
S2). FTIR (Fig. S6): 3063.56 (aromatic C-H), 1165.89 (SO2). 1H NMR 
(Fig. S7): 8.41–7.52. 

2.6. Synthesis of TPE-Ph-Th CMP 

1,4-Ph-B(OH)2 (0.2 g, 1 mmol), TPE-Br4 (0.31 g, 0.4 mmol), Th-Br4 
(0.21 g, 0.4 mmol), K2CO3 (0.2 g, 8 mmol) and Pd(PPh3)4 (0.05 g, 0.05 
mmol) directly into the round bottom flask with DMF solution (20 mL). 
The mixture underwent reflux in the N2 atmosphere at 120 ◦C for 3 days. 
After the reaction was completed, the solution was filtered by THF, 
acetone, and MeOH to remove unreacted monomers. The obtained res-
idue was then dried at 100 ◦C overnight to get light green powder [Fig. 1 
(a)]: To prepare TPE-Ph-Tha CMP: DMF solution (20 mL), 1,4-Ph-B 
(OH)2 (0.2 g, 1 mmol), TPE-Br4 (0.31 g, 0.4 mmol), Tha-Br2 (0.23 g, 0.6 
mmol), K2CO3 (0.2 g, 8 mmol) and Pd(PPh3)4 (0.05 g, 0.05 mmol). The 
obtained solid was dried for one day under a vacuum at 110 ◦C in an 
oven to collect a light green solid [[Fig. 1(b)]: To prepare TPE-Ph-BSu 
CMP [Fig. 1(c)]: 1,4-Ph-B(OH)2 (0.2 g, 1 mmol), TPE-Br4 (0.31 g, 0.4 
mmol), BSu-Br2 (0.32 g, 0.6 mmol), K2CO3 (0.2 g, 8 mmol) and Pd 
(PPh3)4 (0.05 g, 0.05 mmol) in DMF (20 mL) to acquire the light green 
solid. 

Fig. 1. The schematic approach for the synthesis of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs.  
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3. Results and Discussion 

3.1. Synthesis and Characterization of TPE-Ph-Th, TPE-Ph-Tha and TPE- 
Ph-BSu CMPs 

In this study, four monomers, namely TPE-Br4, Th-Br4, Tha-Br2, and 
BSu-Br2, were prepared for the synthesis of three fluorescent TPE-Ph 
CMPs materials. These monomers were obtained through bromination 
and oxidation reactions, which were carried out on their respective 
starting materials. First, TPE was reacted for two days with excess Br2 
solution in the DCM/AcOH solution to create the TPE-Br4 with a high 
yield. The Th-Br4 was synthesized via the reaction of the Th compound 
with more amount of Br2 under refluxing for 16 h in the AcOH solution 
[Scheme S1]. Also, Tha-Br2 was prepared through the bromination re-
action of the Th monomer, and then, Tha-Br2 was reacted with the 
mixture of H2O2/AcOH to afford BSu-Br2 [Scheme S2]. The spectro-
scopic analyses Th-Br4, Tha-Br2, and BSu-Br2of and their data are pro-
vided and explained in the experimental part and supporting 
information file. Fig. 1 illustrates the synthesis of three new TPE-Ph 
CMPs incorporating TEP units via a Suzuki cross-coupling reaction. As 
depicted in Fig. 1, the light green solid was obtained by reacting Th-Br4 
or Tha-Br2 or BSu-Br2 with 1,4-Ph-B(OH)2, TPE-Br4, K2CO3, and Pd 
(PPh3)4 in a DMF solution to prepare TPE-Ph-Th [Fig. 1(a)], TPE-Ph-Tha 
[Fig. 1(b)], and TPE-Ph-BSu CMPs [Fig. 1(c)], respectively. The ob-
tained TPE-Ph CMPs solids do not undecomposed and are insoluble in all 
organic solvents [acetone, DCM, EtOH, MeOH, and THF], revealing 
these TPE-Ph CMPs materials had been synthesized successfully and 

displayed high chemical stability also high crosslinking density 
[Figs. S8-S10]. To confirm the three novel TPE-Ph CMPs were success-
fully synthesized that all TPE-Ph CMPs would be tested by FTIR, 13C 
solid-state NMR, and TGA analysis as provided in Fig. 2. All three TPE- 
Ph CMPs demonstrated the obvious absorption characteristics peaks 
around 3075 cm− 1, and 1610–1595 cm− 1 in their FTIR spectra [Fig. 2 
(a)] which represent the C-H aromatic and C= units; respectively. 
Furthermore, the 13C NMR spectra of TPE-Ph-Th, TPE-Ph-Tha, and TPE- 
Ph-BSu CMPs [Fig. 2(b)] displayed clear signals from 119.32 to 
90.04 ppm which represent aromatic carbon nuclei. To examine the 
thermal stability properties of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu 
CMPs, all samples would be heated to 800 ◦C under N2 atmosphere by 
thermogravimetric analysis (TGA) [Fig. 2(c)]. The declining thermal 
curve can be regarded as weight reduction, in other words, TGA can 
illuminate Td10 and char yield. As shown in TGA data the Td10 of TPE-Ph- 
Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs were 505, 462, and 535 ◦C, 
respectively. Moreover, the char yields at 800 ◦C for TPE-Ph-Th, TPE-Ph- 
Tha, and TPE-Ph-BSu CMPs were found to be 72, 63, and 73 wt%, 
respectively. The powder X-ray diffraction (PXRD) profile in Fig. 2(d). 

revealed that all three novel TPE-Ph CMPs materials exhibited an 
amorphous structure, as indicated by the presence of two broad peaks. 
XPS data confirmed the presence of both C and S atoms in both TPE-Ph- 
Th and TPE-Ph-Tha CMPs, while the TPE-Ph-BSu CMP exhibited the 
presence of C, S, and O atoms, as depicted in Fig. 3. 

To identify the porosity properties of three TPE-Ph CMPs, each ma-
terial was tested with nitrogen adsorption-desorption measurements at 
77 K [Fig. 4]. Before the measurement, the TPE-Ph CMPs materials were 

Fig. 2. The characterization data through (a) FTIR, (b) ss13C NMR, (c) TGA, and (d) XRD of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs.  
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degassed under vacuum for 12 h at 150 ◦C. Among these three TPE-Ph 
CMPs materials all performed an instant increase for N2 capture in P/ 
P0 > 0.8 shown in the N2 adsorption-desorption profile [Fig. 4(a-c)]. In 
addition, the N2 isotherms of three TPE-Ph CMPs confirmed that Type III 
(according to IUPAC classification) which indicated that the framework 
structure of TPE-Ph CMPs displayed microporous characteristics. The 
non-closure of the desorption curve for TPE-Ph-Tha CMP can be ascribed 
to the capillary condensation effect within its pore structure, leading to a 
delay when compared to the adsorption curve. The specific surface areas 
for TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs were 67, 18, and 
41 m2 g− 1, respectively. 

As for total pore volume (Vtotal) which was estimated from the N2 
absorbed when P/P0 = 0.99 were 0.33, 0.1, and 0.1255 cm3 g− 1, 
respectively. Fig. 4(d-f) indicated the pore size diameter of TPE-Ph-Th, 
TPE-Ph-Tha, and TPE-Ph-BSu CMPs were 2, 2.6, and 2.1 nm, respec-
tively. The TEM images in Fig. 5(a-c) demonstrated that all three TPE-Ph 
CMPs possessed a nano-porous network structure. The SEM images in 
Fig. 5(d-f) revealed that the surface morphologies of the three TPE-Ph 
CMPs exhibited an irregular and aggregated morphology. The 
elemental area mapping of TPE-Ph-Th and TPE-Ph-Tha CMPs using 
energy-dispersive X-ray spectroscopy (EDS) revealed a uniform distri-
bution of carbon (C) and sulfur (S) atoms within their frameworks 
[Figs. S11(a-f)]. Additionally, the EDS results indicated that the TPE-Ph- 
BSu CMP material exhibited a homogeneous distribution of C, O, and S 
atoms [Figs. S11(g-i)]. 

3.2. Electrochemical Analysis of TPE-Ph-Th, TPE-Ph-Tha and TPE-Ph- 
BSu CMPs 

In this investigation, a three-electrode setup with a 1.0 M KOH 
electrolyte was used to test the ability of three distinct samples, TPE-Ph- 
Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs, to store energy. The effective-
ness of the samples was evaluated using the cyclic voltammetry (CV) and 
galvanostatic charge/discharge (GCD) tests within the working poten-
tial range of 0 to − 1.0 V. Fig. 6(a-c) present the CV of TPE-Ph-Th, TPE- 

Ph-Tha and TPE-Ph-BSu CMPs, respectively, measured at various scan 
rates (5–200 mV/s). These CV curves have specific redox characteristics 
and rectangular forms, indicating the significant contribution of both 
electrical double-layer capacitance (EDLC) and pseudocapacitance 
[66–70]. Additionally, it can be observed that the enclosed area of the 
curves expands with increasing scan rates, indicating improved capa-
bility. Fig. 6(d-f) display the GCD curves TPE-Ph-Th, TPE-Ph-Tha, and 
TPE-Ph-BSu CMPs from 0.5 to 20 A/g. The obtained samples exhibit 
triangular profiles with slight bends at 0.5 A/g, suggesting good 
reversibility of charge/discharge cycles and excellent capacitive 
behavior. Notably, the discharge time for all samples is longer than the 
charging time, indicating increased capacitance. 

The calculations for the EDLC and pseudocapacitance contributions 
of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs are depicted in Fig. 7. 
Our results indicate that the TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu 
CMPs exhibit pseudocapacitive contributions of 87.1%, 97.1%, and 
99.5%, respectively. 

Fig. 8(a) summarizes the specific capacitance values of all TPE-Ph 
CMP samples measured from 0.5 to 20 A/g using equation S1. The 
TPE-Ph-Th CMP exhibits specific capacitance values of 39.45, 5.46, 
4.92, 4.38, 4.05, 3.85, 3.8, 3.6, and 3.6 F g− 1; TPE-Ph-Tha CMP dem-
onstrates specific capacitance values of 51, 10.6, 9, 8.5, 7.75, 7.21, 6.8, 
6.6, and 6.6 F g− 1, while TPE-Ph-BSu CMP achieves specific capacitance 
values of 52, 9.6, 7.88, 6.7, 6.53, 6.5, 6.2, 5.97, and 4.98 F g− 1. under 
various current densities of 0.5–20 A/g, respectively. Fig. 8(b) illus-
trates the cycling stability of each sample over consecutive 5000 cycles 
at 10 A/g. Remarkably, TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs 
demonstrate superior capacitance retention of 65%, 78%, and 80%, 
respectively. These values confirm the long-term stability and excellent 
cyclic capability of the samples, making them suitable for use as 
supercapacitor electrodes. Additionally, significant parameters such as 
energy and power densities for the samples are explored in Fig. 8(c). 
Notably, TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs achieve energy 
densities of 5.5, 7.1, and 7.2 Wh/kg, respectively, at a power density of 
250 W/kg. These values represent preferable performance 

Fig. 3. XPS profiles of (a) TPE-Ph-Th, (b) TPE-Ph-Tha, and (c) TPE-Ph-BSu CMPs.  
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characteristics for energy storage applications. Table S1 compares the 
specific capacitance of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs 
with that of materials previously reported for supercapacitor (SC) 
applications. 

3.3. Fluorescence properties and fluorescent sensing of p-nitrophenol for 
TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs 

To explore the optical nature of the synthesized compounds namely 
TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs, they were submerged 
in various organic solvents such as EtOH, acetone, DMF, and THF, and 
their emission spectrum was recorded using a fluorescence spectro-
photometer (Edinburg Instrument model FS5). As a result, TPE-Ph-Th 
CMP, TPE-Ph-Tha CMP, and TPE-Ph-BSu CMP exhibit significant fluo-
rescence intensity between 510 nm and 530 nm range at different sol-
vents mentioned above, as illustrated in Fig. 9, S12, and S13. In addition, 
beginning at excitation 300–400 nm, the obtained emission was highly 
dependent on excitation intensity, which was remarkably comparable to 
other frequently reported fluorescence and RTP-based nanoprobes uti-
lized for various applications [71–73]. TPE-Ph-BSu CMP had an emis-
sion peak maximum at 530 nm, while TPE-Ph-Tha and TPE-Ph-Th CMPs 
had emission peak maximums at 517 nm and 527 nm, respectively (PL 
spectra showed in Figs. S12 and S13). THF mixed compounds show a 
maximum emission peak for all substances than that of the other sol-
vents. This observation shows that the synthesized compounds’ PL 
emission may be caused by localized sp2 carbon/sulfur subdomains 

(core state). Because of their distinct and individual excitation proper-
ties, the current probes exhibited a strong greenish-yellow fluorescence 
color. 

The Commission Internationale de L′Eclairage (CIE) chromaticity 
diagram color chart in Fig. 10, S14, and S15 show many points that 
suggest TPE-Ph-Th CMP, TPE-Ph-Tha CMP, and TPE-Ph-BSu CMP pro-
duce strong green fluorescence at excitation 340 nm. For all solvents, 
acetone and EtOH, however, displayed fewer x, y coordinates in the 
green light zone than they exhibited in the yellow region [Figs. 10(a) 
and 10(c)]. the PL emission of TPE-Ph-Th CMP covers the green-to- 
yellow edge (greenish-yellow) light area. The DMF and THF solvents’ 
x, y coordinates primarily displayed a green zone that later stretched to a 
yellow region [Figs. 10(b) and 10(d)]. For DMF and THF, the TPE-Ph- 
Tha CMP instance exhibits a blue edge to the green area [Fig. S14(b) 
and S14(d)]. Only the green light portion of the screen displayed the x, y 
coordinates for the 

solvent’s acetone and EtOH [Fig. S14(a) and S14(c)]. The CIE (x,y) 
coordinates chromaticity diagram in Figs. S15(a)-S15(d) shows that all 
of the solvents for TPE-Ph-BSu CMP had similar types of x,y coordinates 
at green light areas. The quantum yields (QY) for TPE-Ph-Th, TPE-Ph- 
Tha, and TPE-Ph-BSu CMPs were 7.58%, 1.26%, and 3.34%, respec-
tively. The electron-deficient nitroaromatic compounds (NACs) are 
capable of interacting noncovalently with electron-rich aromatic rings, 
resulting in alterations to the fluorescence emission characteristics of the 
fluorophore. One example of such changes can be seen in the well- 
known thermal stability and -conjugated skeletons based on TPE. The 

Fig. 4. The N2 adsorption-desorption (a-c) and pore diameter (d-f) curves of (a, d) TPE-Ph-Th, (b, e) TPE-Ph-Tha, and (c, f) TPE-Ph-BSu CMPs.  
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direct attachment of the thiophene moiety to the phenyl ring system 
imparts high rigidity, which effectively prevents the occurrence of sig-
nificant π − π stacking interactions and helps to minimize aggregation- 
caused quenching (ACQ) [74,75]. Due to the potential for stronger 
noncovalent interactions between PNP and TPE-Ph- CMPs FL probes, a 
noticeable enhancement in quenching by PNP has been observed. Under 
the optimal experimental circumstances, the effect of the PNP on the 
fluorescence of the TPE-Ph-Th CMP, TPE-Ph-Tha CMP, and TPE-Ph-BSu 
CMP has been evaluated. To sense the PNP, different concentrations of 
PNP were prepared and their fluorescence intensity was monitored at 
530 nm, 517 nm, and 527 nm with the fixed excitation [Fig. 11] to 
assess the sensitivity of the prepared compounds TPE-Ph-Th CMP, 
TPE-Ph-Tha CMP, and TPE-Ph-BSu CMP for detecting PNP. Fig. 11(a-c) 
depict the influence of PNP concentration (5 × 10− 6 to 1 × 10− 2 M) on 
TPE-Ph-Th CMP, TPE-Ph-Tha CMP, and TPE-Ph-BSu CMP emission 
spectra. (F0-F)/F decreased linearly with PNP concentration increased 
from 5 × 10− 6 to 1 × 10− 4 M in Fig. S16, with a calibration function of 
(F0-F)/F = 0.0341 CPNP - 0.0088 and a correlation value (R2) of 0.97 for 
TPE-Ph-Th CMP. (F0-F)/F rise linearly with PNP concentration raises 
from 5 × 10− 6 to 1 × 10− 4 M in Fig. S16(a), with a calibration function 
of (F0-F)/F = 0.051 CPNP - 0.0116 and a correlation value (R2) of 0.92 for 
TPE-Ph-Tha CMP [Fig. S16(b)]. For TPE-Ph-BSu CMP the (F0-F)/F was 
raised linearly with PNP concentration raises from 5 × 10− 6 to 1 × 10− 4 

M in Fig. S16(c), with a calibration function of (F0-F)/F = 0.0429 CPNP - 
0.00986 and a correlation value (R2) of 0.97. The detection limits for 
PNP were determined as follows: 4.3 × 10− 8 M for TPE-Ph-Th CMP, 
4.7 × 10− 8 M for TPE-Ph-Tha CMP, and 5.1 × 10− 8 M for TPE-Ph-BSu 
CMP. Our sensing method exhibited a high degree of comparability 
with previously reported PNP sensing methods (Table S2). All synthe-
sized compounds act as good fluorescent probes for the detection of PNP 
at a trace level. However, high linearity was observed on the 
TPE-Ph-BSu CMP probe for the detection of PNP. It is due to the func-
tional group on the surface of TPE cored CMP molecule. 

In order to craft a probe with exceptional selectivity and sensitivity, 
it is imperative to possess a comprehensive understanding of the inter-
play among the molecular structures of the probe, quencher, and the 
fluorescence quenching process. Photoinduced electron transfer (PET) is 

a phenomenon characterized by the migration of electrons from a donor 
with an electron surplus to an acceptor with an electron deficit. For this 
intricate dance to transpire, the energy differential between the highest 
occupied molecular orbital (HOMO) and the lowest unoccupied mo-
lecular orbital (LUMO) of the probe must surpass the disparity between 
the LUMO levels of the probe (donor) and the quencher (acceptor). 
Furthermore, it’s worth noting that PNP possesses a robust light- 
absorption capacity within the wavelength range of 200–450 nm. 
Particularly noteworthy is the alignment of PNP’s absorption band with 
the emission wavelength (excitation) at 527 nm, 519 nm, and 531 nm, 
respectively. Consequently, competition emerges between the emission 
band of the fluorescent molecule and the absorption band of the 
analyzed substance, culminating in the effective quenching of PNP. The 
quenching of luminescence in PNP (as illustrated in Fig. 12) can be 
attributed to the transfer of electrons from the electron-rich probe to the 
electron-deficient PNP molecules. When PNP infiltrates the probe 
environment, the presence of robust π-stacking interactions and other 
favorable interactions substantially heightens the efficacy of quenching 
[65]. 

The extraordinary aggregation-induced emission properties dis-
played by the synthesized TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu 
CMPs further inspired us to investigate the sensing potential of PNP. 
TPE has rotating peripheral aromatic rings and a distinctive propeller- 
shaped structure. It is widely known that the system’s thianthrene 
moiety’s strong rigidity successfully resists stacking interactions (π − π), 
preventing aggregation-induced quenching. The energy transfer mech-
anism between TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs and PNP 
that occurs when PNP is added to the CMPs intensifies the fluorescence 
quenching effect. The fluorescence decay spectra were observed when 
excited at 365 nm for TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs 
with PNP. These spectra were analyzed using biexponential curve 
fitting, resulting in average lifetimes of 5.81 ns, 6.10 ns, and 4.54 ns for 
TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs, respectively [Fig. S17]. 
Due to their remarkable fluorescence characteristics, the TPE-Ph-Th, 
TPE-Ph-Tha, and TPE-Ph-BSu CMPs exhibit great potential for applica-
tion as chemical sensors capable of detecting various metal ions. In the 
context of this chemical sensing study, a diverse range of metal ions was 

Fig. 5. HR-TEM (a-c) and SEM (d-f) images of (a, d) TPE-Ph-Th, (b, e) TPE-Ph-Tha, and (c, f) TPE-Ph-BSu CMPs.  
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Fig. 6. Corresponding CV (a-c) and GCD (d-f) profiles of (a, c) TPE-Ph-Th, (b, d) TPE-Ph-Tha, and (c, f) TPE-Ph-BSu CMPs.  

Fig. 7. EDLC and pseudocapacitance contribution of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs.  
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Fig. 8. Corresponding capacitance (a), capacitance retention (b), and Ragone (c) profiles of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs.  

Fig. 9. Fluorescence spectra of the TPE-Ph-Th CMP in (a) acetone, (b) DMF, (c) EtOH, and (d) THF.  
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deliberately chosen to serve as interfering analytes, encompassing Co2+, 
Cr3+, Cu2+, Fe2+, Hg2+, Pb2+, and Zn2+ ions. Upon introducing these 
metal ions at a concentration of 0.01 mol/L (2 mL) into a 2 mL disper-
sion of CMPs (TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu), which were 
prepared by dispersing 4 mg of the CMPs in 10 mL of tetrahydrofuran 
(THF), an intriguing observation emerged. The outcomes of our study 
are visually represented in Figs. S18, S19, and S20. Figs. S18, S19, and 
S20 vividly illustrate the variation in peak intensity at 530 nm, 517 nm, 
and 527 nm concerning TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu CMPs 
when exposed to a range of metal ions, including Co2+, Cr3+, Cu2+, Fe2+, 
Hg2+, Pb2+, and Zn2+. Remarkably, the plotted data reveals that the 
emission intensity of the CMPs remained unaltered, and no substantial 
quenching was observed. This finding underscores the resilience and 
reliability of these materials as chemical sensors tailored for the detec-
tion of the aforementioned metal ions. Our study distinctly establishes 
the exceptional selectivity of TPE-Ph-Th, TPE-Ph-Tha, and TPE-Ph-BSu 
CMPs in detecting PNP without any interference from other substances. 

4. Conclusions 

In our recent study, we successfully synthesized a unique set of TPE- 
Ph linked CMPs through a straightforward Suzuki cross-coupling reac-
tion. This reaction involved the use of Th-Br4 or Tha-Br2 or BSu-Br2, 
along with 1,4-Ph-B(OH)2 and TPE-Br4, in a DMF solvent. Among the 
three TPE-Ph CMP materials synthesized, the TPE-Ph-BSu CMP material 
exhibited the most favorable thermal characteristics, with a Td10 value of 
535 ◦C and a char yield of 73 wt%. Furthermore, we explored the 
application of the TPE-Ph CMP materials as electrode-active materials 
for SCs. Both TPE-Ph-Tha and TPE-Ph-BSu CMPs demonstrated excellent 
supercapacitive activity in our electrochemical experiments. Specif-
ically, their specific capacities were measured to be 51 and 52 F g− 1, 
respectively, at 0.5 A g− 1. Additionally, the TPE-Ph-Tha and TPE-Ph- 
BSu CMPs exhibited remarkable capacitance retention, retaining 80% 
of their initial capacitance after undergoing 5000 charge-discharge cy-
cles. Moreover, we have successfully employed the three TPE-Ph CMPs- 
based fluorophores for the detection of PNP. Among the three CMPs, 

Fig. 10. The effect on CIE chromaticity diagram of the TPE-Ph-Th CMP at different solvents (a) acetone (b) DMF, (c) EtOH and (d) THF.  
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TPE-Ph-BSu CMP exhibited superior sensitivity compared to the others. 
This improved sensitivity can be attributed to the favorable electron- 
transferring energy level matching achieved through the phenomenon 
of PICT. 
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experiments. 
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