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A B S T R A C T   

Herein, a novel approach for synthesizing three distinct types of conjugated microporous polymers (CMPs) is 
presented. The method involves utilizing 2,1,3-benzothiadiazole (BBT) as a common monomeric unit, along with 
other monomeric units such as triphenylamine (TPA), tetraphenylethylene (TPE), and pyrene (Py), which exhibit 
varying levels of planarity. The synthesis of CMPs is achieved through a Suzuki coupling condensation reaction 
involving 4,7-dibromo-2,1,3-benzothiadiazole (BBT-Br2) and 1,4-benzeneboronic acid [PhB(OH)2]. The resulting 
CMPs possess unique structural characteristics, adjustable pore sizes, and exceptional chemical and physical 
properties, thereby surpassing other existing materials in their performance. Notably, these CMPs demonstrate 
favorable thermal stability and porosity comparable to previously reported CMPs in the literature. Among the 
synthesized CMPs, the TPE-Ph-BBT CMP exhibits the highest thermal stability, with a char yield of 72 wt%. 
Additionally, the biocompatibility and toxicity of the CMPs are assessed using an MTT assay and a live/dead cell 
viability assay. The findings reveal that the CMPs exhibit low toxicity and outstanding biocompatibility, as 
evidenced by cell viability values exceeding 90% after 24 or 48 h of incubation. Thus, these CMPs hold signif-
icant potential for biomedical applications. Furthermore, the CMPs can effectively serve as drug carriers for 
tetracycline antibiotics. The antimicrobial activity of tetracycline (TCH)-loaded CMPs is evaluated using an in-
hibition zone methodology, demonstrating wide zones of inhibition measuring up to 1.7 cm against Staphylo-
coccus aureus (S. aureus) and 1.9 cm against Escherichia coli (E. coli). This study highlights the promising 
prospects of CMPs in molecular engineering and their utility in diverse therapeutic applications as efficient drug 
carriers.   

1. Introduction 

Recent years have seen a lot of interest in porous organic polymers 
(POPs) because of their varied shapes and uses [1,2]. These materials are 
formed through covalent bonds between monomeric building blocks, 
that significantly increase chemical stability in a variety of organic liq-
uids [3-5]. POPs encompass various family members, including conju-
gated microporous polymers (CMPs) [6,7], porous aromatic frameworks 
(PAFs) [8,9], covalent organic frameworks (COFs) [10–12], hyper-cross- 

linked polymers (HCPs) [13,14], polymers of intrinsic microporosity 
(PIMs) [15,16], and covalent triazine polymers or frameworks (CTPs or 
CTFs) [17–19]. The covalently bonded networks of POPs find utility in a 
variety of uses, including biomedicine, optoelectronics, heterogeneous 
catalysis, sensing, gas storage, and separation, among others [20–26]. 
POPs, or porous organic polymers, offer promising opportunities for a 
number of biomedical uses because of their capacity for being synthe-
sized on a large scale, compatibility with cell viability and penetration, 
and diverse structural properties [27–37]. For the development of POPs, 
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significant study endeavors have been made specifically for their po-
tential biomedical applications. One key advantage of POPs over inor-
ganic porous materials or MOFs is their construction from metal-free 
organic building blocks, which may result in lower cytotoxicity and 
improved biocompatibility, making them particularly appealing to use 
in biomedical fields. One of the many POPs, CMPs, or conjugated 
microporous polymers, have emerged as a particularly intriguing option 
for biomedical applications [38–40]. CMPs are typically synthesized 
through a sequence of polycondensation reactions, including methods 
such as Suzuki coupling, metathesis, Sonogashira coupling, oxidative 
polymerization, Buchwald-Hartwig Amination, and Knoevenagel reac-
tion [41–46]. CMPs, or conjugated microporous polymers, are distinct 
from other porous polymers because of their expanded π-conjugated 
skeletons and intrinsic porosity, which create an extended conjugation 
structure in their backbone [47]. This unique structure makes CMPs 
highly useful in various biomedical applications, such as biosensing, 
bioimaging, drug delivery, antibacterial treatments, and phototherapy 
[48–54]. In addition, CMPs and their derivatives have attracted notice 
recently as promising adsorbents because of their exceptional structural 
characteristics [55,56]. Imteaz Ahmed et al. used a new mesoporous N- 
doped carbonaceous material with excellent sulfonamides adsorption 
properties [57]. Zhang et al. prepared diol-based porous organic poly-
mers (POPs) with a permeable diol structure effectively combined with 
tetracycline (TC), and the results exhibited excellent TC removal effi-
ciency [58]. POP materials, with their unique chemical structure that 
includes flexible linking groups between rigid aromatic rings, suitable 
functional group density, and graded porosity, offer potential as effec-
tive candidates for the removal of antibiotics. This is due to their effi-
cient adsorption properties. Furthermore, CMPs can serve as carriers for 
loading antimicrobial agents such as antibiotics, antimicrobial peptides, 

photosensitizers, etc. and releasing them from the CMPs structure to 
inhibit bacterial growth. Consequently, looking into inexpensive re-
sources for effective antibiotic therapeutics is essential. Additionally, 
many medicines have disadvantages like poor stability, side effects, and 
toxicity. However, by selecting a suitable drug carrier, these disadvan-
tages can be eliminated, making drug carriers an essential component in 
addressing these issues [59]. Our objective was to develop affordable 
antibiotic-loaded CMPs that can be manufactured in large quantities, to 
mitigate the toxicity associated with direct antibiotic use and augment 
their antimicrobial efficacy. In this study, we present three novel CMPs’ 
preparation and characterization based on TPA/TPE/Py and BBT units 
through a Suzuki coupling condensation protocol, namely TPA-Ph-BBT, 
TPE-Ph-BBT, and Py-Ph-BBT CMPs, as depicted in Fig. 1. We used 
various techniques, including FTIR, SSNMR, TGA, XPS, BET, SEM, TEM, 
and PXRD, to emphasize their molecular structures, thermal robustness, 
porosities, morphologies, and amorphous natures. We also evaluated 
their nonhazardous nature using the MTT assay methodology. Further-
more, we demonstrated the use of these three new BBT-CMPs as drug 
carriers for the antibiotic tetracycline hydrochloride (TCH) by providing 
abundant coordination sites for π-π stacking with TCH through the 
structural aromatic rings of BBT-CMPs, enhancing the loading capacity 
of TCH, and providing effective anchoring of TCH in BBT-CMPs, 
avoiding self-aggregation of CMPs, and greatly enhancing the antibac-
terial activity. We evaluated the antimicrobial activity of these carriers 
using a zone of inhibition method. Overall, our study shows that these 
low-cost and mass-producible antibiotic-loaded CMPs have low toxicity, 
good biocompatibility, and enhanced antimicrobial impact compared to 
direct antimicrobial treatment, making them promising candidates for 
future drug delivery systems. 

Fig. 1. Schematic representation of the preparation of (a) TPA-Ph-BBT, (b) TPE-Ph-BBT, and (c) Py-Ph-BBT CMPs.  
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2. Experimental section 

2.1. Materials 

Pyrene (Py, 98%), triphenylamine (TPA), bromine (Br2), ethanol 
(EtOH), dichloromethane (DCM), acetic acid (AcOH), benzophenone 
(Benz, 99%), zinc (Zn, 98%), tetrahydrofuran (THF), titanium tetra-
chloride (TiCl4, 99.9%), potassium carbonate (K2CO3, 99.9%), tetrakis 
(triphenylphosphine)palladium (Pd(PPh3)4), ethyl acetate (EA), meth-
anol (MeOH), acetone and dimethylformamide (DMF) were purchased 
from J. T. Baker. nitrobenzene, anhydrous magnesium sulfate (MgSO4, 
99.5%), 1,4-benzeneboronic acid [PhB(OH)2], 2,1,3-benzothiadiazole 
(BBT), and N-bromosuccinimide (NBS, 99 %) were obtained from 
Acros. tetracycline hydrochloride (TCH, 98%) was purchased from Alfa 
Aesar without further purification. 

2.2. Synthesis of 1,3,6,8-Tetrabromopyrene (Py-Br4) 

To synthesize Py-Br4, a round flask with a single neck was used. A 
solution of bromine (4.6 mL, 88 mmol) was dissolved in 40 mL of 
nitrobenzene in a flask. Then, 4.00 g of pyrene was added to the solu-
tion, which was also dissolved in 40 mL of nitrobenzene. The resulting 
mixture was refluxed at 120 ◦C for four hours until a green powder was 
obtained. The green powder was washed repeatedly with ethanol, 
filtered, and dried to yield Py-Br4 (Scheme S1, 8.80 g, 90%). FTIR 
(Figure S1): 3053 and 682 cm− 1. Td10 = 385 ◦C, measured by TGA under 
N2. 

2.3. Synthesis of tetraphenylethylene (TPE) 

Zn (5.31 g, 81.2 mmol) and Benz (4.00 g, 21.8 mmol) were mixed in 
100 mL of THF and agitated under nitrogen at ambient temperature for 
10 min. The combination was then combined with TiCl4 (4.60 mL, 
42.17 mmol), and the resulting solution was refluxed at 80 ◦C for 24 h. 
Then, the combination was introduced to a 5% of K2CO3 solution, and 
the THF was evaporated under decreased pressure. EA was then used to 
separate the residual watery phase. To produce TPE (3.55 g, 97%) as a 
white solid, the EA was vaporized, and the obtained solid was then 
rinsed with ethanol. 

as shown in Scheme S2. M.p.: 229 ◦C (Figure S2). FTIR (Figure S3): 
3047. 1H NMR (Figure S4): 7.15–7.08 (20H). 13C NMR (Figure S5): 
140.70, 141.00, 131.30, 127.70, 126.4. 

2.4. Synthesis of 1,1,2,2-Tetrakis(4-bromophenyl)ethene (TPE-Br4) 

TPE (6.64 g, 20 mmol) was dissolved in a solution of DCM (40 mL), 
and AcOH (20 mL), at 0 ◦C. The flask was then filled with Br2 (8.00 mL, 
160 mmol), and the resulting mixture was agitated at 0 ◦C for 48 h. After 
that, 400 mL of H2O was added to the reaction, and DCM was used to 
separate the resulting TPE-Br4 as a white powder. The yield of TPE-Br4 
was 12.3 g (95%), as shown in Scheme S2. M.p.: 262 ◦C (Figure S6). 
FTIR (Figure S7): 3051 and 1572 cm− 1. 1H NMR (Figure S8): 7.25–6.84 
(16H). 13C NMR (Figure S9): 142.30, 139.70, 133.70, 131.90, 121.80. 
Td10 = 354 ◦C, measured by TGA under N2. 

2.5. Synthesis of 4,7-dibromobenzo[c][1,2,5]thiadiazole (BBT-Br2) 

15 g (110.1 mmol) of BBT, 120 mL (48 % HBr), and a solution of 
52.8 g (330.45 mmol) of Br2 were all combined. The reaction was 
finished after the combination was elevated to reflux for 16 h at 100 ◦C. 
To isolate the product, the mixture was added to a cold NaOH solution 
and extracted with DCM. The resulting white powder of BBT-Br2 
weighed 7.5 g, which corresponds to a yield of 70% based on the starting 
amount of BBT. The synthesis of BBT-Br2 is depicted in Scheme S3. FTIR 
(Figure S10): 3035. 1H NMR (Figure S11): 7.73 (2H). 13C NMR 
(Figure S12): 154, 115. 

2.6. Synthesis of Tris(4-bromophenyl)amine (TPA-Br3) 

2.00 g (11.5 mmol) of NBS was added to a round-bottom flask along 
with a solution of 0.918 g (3.74 mmol) of TPA in 30 mL of DMF. After 
that, the flask was agitated for 24 h at 0 ◦C. Following the vaporization 
of the DMF, the flask was filled with 600 mL of water and 400 mL of 
DCM. The organic component was condensed under pressure after being 
filtered and desiccated over MgSO4. The resultant substance was 
repeatedly washed with MeOH to produce a white powder (1.88 g, 90%) 
as shown in Scheme S4. M.p.: 142 ◦C (Figure S13). FTIR (Figure S14): 
3078, 1618 (CC stretching). 1H NMR (Figure S15): 6.94–7.35 
(12H). 13C NMR (Figure S16): 146.80–116.40. Td10 = 317 ◦C, measured 
by TGA under N2. 

2.7. Preparation of TPA-Ph-BBT, TPE-Ph-BBT and Py-Ph-BBT CMPs 

To prepare TPA-Ph-BBT, TPE-Ph-BBT and Py-Ph-BBT CMPs a 
mixture of 0.4 g (0.83 mmol) of TPA-Br3 or 0.48 g (0.76 mmol) of TPE- 
Br4 or 0.5 g (0.97 mmol) of Py-Br4, 0.2 g (1.21 mmol) of PhB(OH)2, 0.12 
g (0.41 mmol) of BBT-Br2, 0.92 g (6.66 mmol) of k2CO3, and 0.05 g 
(0.04 mmol) of Pd(PPh3)4 in DMF (20 mL) and water (10 mL) under 
reflux for 72 h at 90 ◦C. After cooling, the substance was filtered off and 
successively rinsed with acetone, water, MeOH, and THF. The resulting 
orange solid was identified as TPA-Ph-BBT CMP, with a yield of 83%, as 
shown in Scheme S5, and green powder was identified as TPE-Ph-BBT 
CMP with a yield of 82%, as shown in Scheme S6 and Py-Ph-BBT 
CMP as a green solid with a yield of 75%, as depicted in Scheme S7. 

2.8. Antibacterial test 

In this experiment, the antimicrobial activity of TCH-TPA-Ph-BBT, 
TCH-TPE-Ph-BBT, and TCH-Py-Ph-BBT CMPs was tested using the 
modified Kirby-Bauer method. S. aureus (ATCC No. 25923) and E. coli 
(ATCC No. 25922) were used to serve as bacterial models. To prepare 
the bacterial solution, a UV–visible spectrophotometer (V-770, Jasco 
Inc.) was used to attain an optical density (OD) of 0.1 at 600 nm. The 
agar substrate was then inoculated with 100 µL of the bacterial solution, 
and disc-shaped samples were carefully placed on the agar substrate. 
The substrate was then incubated at 37 ◦C for 24 h to allow the colonies 
to grow over the entire agar substrate. Finally, images of the inhibition 
circles of the samples were taken with a camera, and Image-Pro Plus 
measured the inhibition circles of the samples, and the average value 
was recorded by repeating three samples. 

3. Results and discussion 

3.1. Synthesis and molecular characterization of BBT-Linked CMPs 

Several compounds were synthesized and characterized in this study. 
Py-Br4 was obtained as a green powder by refluxing Py with Br2 in 
nitrobenzene (Scheme S1). The synthesis of TPE-Br4 involved two 
stages. (Scheme S2): first, TPE was prepared by reacting benzophenone 
with zinc in the presence of THF and TiCl4; second, TPE-Br4 was syn-
thesized as a white powder by reacting TPE with Br2 in CH2Cl2. BBT-Br2 
was obtained by reacting BBT with Br2/HBr in the presence of AcOH 
(Scheme S3). TPA-Br3 was synthesized as a white powder by reacting 
TPA with NBS in the presence of DMF (Scheme S4). DSC, FTIR, and 
NMR analysis confirmed the purity of Py-Br4, TPE, TPE-Br4, and TPA- 
Br3. The stretching vibrations of the C–H aromatic and C––C bonds, 
respectively, were ascribed to the bands at 3047 and 1602 cm− 1 in the 
FTIR spectrum of TPE [Figure S3]. The 1H NMR spectrum of TPE 
[Figure S4] displayed proton signals for the aromatic rings at 7.14 and 
7.04 ppm, while the 13C NMR profile of TPE indicated evidence for ar-
omatic ring carbon atoms in the range of 144.06–126.56 ppm 
[Figure S5]. Py-Br4, TPE-Br4, and TPA-Br3 also exhibited FTIR bands in 
the range of 3078–3047 and 1618–1572 cm− 1, corresponding to 
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vibrational modes of aryl C–H bond and C––C bonds [Figures S1, S7 
and S14]. Other spectroscopic results of Py-Br4, TPE-Br4, BBT-Br2, and 
TPA-Br3 are discussed in detail in the experimental part and their 
characterization are provided in the supporting information file. The 
synthesis of three BBT-CMP was achieved through Suzuki polymeriza-
tions in DMF and H2O mixtures with K2CO3 and Pd as the catalyst at 
90 ◦C under a N2 atmosphere, as shown in Fig. 1. TPA-Ph-BBT, TPE-Ph- 
BBT, and Py-Ph-BBT CMPs were obtained as orange [Fig. 1(a)], green 
[Fig. 1(b)], and green solids [Fig. 1(c)], respectively, from the reactions 
of TPA-Br3, TPE-Br4, and Py-Br4 with PhB(OH)2 and BBT-Br2. The 
resultant BBT-CMPs showed porosity properties, as they weren’t soluble 
in any of the examined liquids [DMF, MeOH, THF, DCM, acetone, and 
DMSO], indicating significant crosslinking densities and polymeriza-
tion. FTIR and solid-state 13C NMR spectroscopy were used to corrob-
orate the molecular structures of the produced BBT-CMPs. The FTIR 
spectra of the three BBT-CMPs [Fig. 2(a)], showed intense signals at 
1604 cm− 1, indicating their imine (C––N) stretching. The absorption 
peaks at 1595 and 3098–3021 cm− 1 represented the C––C bonds and 
their C–H aromatic stretching vibrations. Also, in all BBT-CMPs, the 
signal corresponding to C-Br in the FTIR profiles was completely absent 
or undetectable [Figures S17-S19]. The solid-state 13C NMR analysis 
[Fig. 2(b)], showed carbon signals in the range of 143–116.7 ppm 
comparable to the phenyl groups and signal at 170 ppm representing 
C––N bonds. The thermal stabilities of BBT-CMPs were examined 
through TGA under N2 atmospheres [Fig. 2(c)]. TPA-Ph-BBT, TPE-Ph- 
BBT, and Py-Ph-BBT CMPs showed thermal degradation temperatures 
Td5 and Td10 of 410 and 491 ◦C, 404 and 554 ◦C, and 341 and 357 ◦C, 
respectively. The TPA-Ph-BBT, TPE-Ph-BBT, and Py-Ph-BBT CMPs also 
displayed char yields of 71 wt%, 72 wt%, and 18 wt%, respectively. 

Finally, the elemental compositions of the BBT CMPs were confirmed 
using XPS, which demonstrated the existence of S, C, and N elements in 
all three BBT-CMPs, as depicted in Fig. 2(d). 

We conducted N2 adsorption/desorption measurements to investi-
gate the porosities of three BBT-CMP. The N2 adsorption curves (Fig. 3 
(a-c)) showed a rapid increase in N2 uptake for values higher than 0.9 in 
all three BBT-CMPs. The presence of hysteresis in the desorption pro-
cesses of the TPE-Ph-BBT CMPs revealed that the framework structure of 
this material possessed both mesoporous and microporous 
characteristics. 

The N2 isotherm profiles of all three BBT-CMPs were type III curves 
according to IUPAC nomenclature. The SBET and total pore volumes for 
TPA-Ph-BBT CMP were 33.4 m2 g− 1 and 0.214 cm3 g− 1, respectively. 
These values were followed by TPE-Ph-BBT CMP at 39.7 m2 g− 1 and 
0.26 cm3 g− 1, and Py-Ph-BBT CMP at 11.1 m2 g− 1 and 0.085 cm3 g− 1, 
respectively. By using NLDFT, we estimated the pore sizes of TPA-Ph- 
BBT CMP to be 2.5 nm, TPE-Ph-BBT CMP to be 2.6 and 4.6 nm, and 
Py-Ph-BBT CMP to be 2.3 nm (Fig. 3(d-f)). This indicates that there is a 
microporous architecture in these BBT-CMP frameworks. 

SEM and TEM techniques were utilized to investigate the morphol-
ogies of the produced BBT-CMPs. The as-synthesized BBT-CMPs exhibit 
varying morphologies, ranging from spherical to tubular structures, 
depending on their planarity degrees. SEM images [Fig. 4(a) and 4(b)] 
of TPA-Ph-BBT and TPE-Ph-BBT CMPs indicate their spherical shapes 
with some degree of aggregation, while the SEM image of Py-Ph-BBT 
CMP reveals a tube-like structure [Fig. 4(c)]. The tubular morphology 
of Py-Ph-BBT CMP can be attributed to the higher planarity of Py units, 
which enhances their assembly in this form [60,61]. The HR-TEM im-
ages revealed the existence of bright and alternating dark areas in TPA- 

Fig. 2. (a) FTIR spectra, (b) solid-state NMR spectra, (c) TGA, and (d) XPS of TPA-Ph-BBT, TPE-Ph-BBT, and Py-Ph-BBT CMPs.  
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Ph-BBT and TPE-Ph-BBT CMPs, indicating the presence of porous net-
works [Fig. 4(d) and 4(e)]. Similarly, the TEM image of Py-Ph-BBT CMP 
[Fig. 4(f)] showed a tube-like structure, consistent with the SEM images 
[60,61]. Additionally, elemental mapping of TPA-Ph-BBT, TPE-Ph-BBT, 
and Py-Ph-BBT CMPs based on SEM analysis revealed the existence of C, 
N, and S elements with homogeneous distributions on their surfaces 
[Figures S20, S21, and S22]. Figures S23-S25 revealed the amorphous 
nature of TPA-Ph-BBT and TPE-Ph-BBT CMPs through powder X-ray 
diffraction (PXRD), while Py-Ph-BBT CMP exhibited semicrystalline 
properties. 

In Figure S26, the emission frequencies of TPA-Ph-BBT, TPE-Ph- 
BBT, and Py-Ph-BBT CMPs are observed at 619 nm, 550 nm, and 541 
nm, respectively when tested in methanol solution. These emission 
wavelengths correspond to orange, yellow, and green colors, respec-
tively. To ensure the safety of CMPs as drug carriers, it is important that 
they exhibit minimal toxicity. Thus, L929 mouse fibroblasts were uti-
lized as test cells to assess their cytotoxicity. However, due to the 
insolubility of BBT-CMPs, the ISO 10993-5 standard screening technique 
was used to assess their cytotoxicity. The cell viability of TPA-Ph-BBT, 
TPE-Ph-BBT, and Py-Ph-BBT CMPs was evaluated after 24 and 48 h of 
incubation with L929 cells, as depicted in Fig. 5(a) and 5(b). The MTT 
assay results indicate that at CMP concentrations of 5, 10, and 20 mg/ 
mL, the cell viability of L929 cells remained above 80% after both 24 
and 48 h of incubation with the BBT-CMPs. This suggests that BBT-CMPs 

exhibit minimal toxicity towards L929 cells, making them safe for use as 
functional drug carriers. Fig. 5(c) displays the results after 48 h of co- 
culture with L929 cells, demonstrating that the majority of cells in all 
CMP groups (TPA-Ph-BBT, TPE-Ph-BBT, and Py-Ph-BBT CMPs) 
remained viable and maintained a spindle-like morphology. These 
findings indicate that the BBT-CMPs possess minimal cytotoxicity. 
Notably, fluorescence microscopy revealed a yellow excitation from our 
CMPs, while the presence of CMPs did not adversely affect the viability 
of L929 cells. For the TCH-loaded CMPs study, representative Gram- 
positive bacteria (S. aureus) and Gram-negative bacteria (E. coli) were 
selected as test strains. To prepare TCH-TPA-Ph-BBT, TCH-TPE-Ph-BBT, 
and TCH-Py-Ph-BBT CMPs, a method was followed similar to that used 
for Py-Ph-BBT CMP. Initially, 20 mg of TCH and 20 mg of the respective 
CMPs were mixed in 5 mL of EtOH and sonicated in an ultrasonic water 
bath for 15 min until adsorption equilibrium was reached. The mixture 
was then subjected to centrifugation at 15000 pm for 5 min to remove 
any unabsorbed TCH. Subsequently, the solvent was removed from TCH- 
TPA-Ph-BBT, TCH-TPE-Ph-BBT, and TCH-Py-Ph-BBT CMPs, respec-
tively. When evaluating the drug loading amount, the TCH-TPA-Ph-BBT, 
TCH-TPE-Ph-BBT, and TCH-Py-Ph-BBT CMPs will be dispersed in 
deionized water, followed by ultrasonication for 30 min. Afterward, the 
dispersed solutions will be measured for absorbance at 360 nm. The 
loading content (LC) will be calculated based on the TCH-water cali-
bration curve (Figure S27) and the following equations: 

Fig. 3. (a − c) N2 adsorption/desorption isotherms and (d − f) pore size distribution patterns of TPA-Ph-BBT (a and d), TPE-Ph-BBT (b and e), and Py-Ph-BBT CMPs 
(c and f). 

A.O. Mousa et al.                                                                                                                                                                                                                               



European Polymer Journal 196 (2023) 112254

6

LC (wt%) = (weight of loaded TCH/weight of CMP) × 100 %.                    

The LC values for TCH-TPA-Ph-BBT, TCH-TPE-Ph-BBT, and TCH-Py- 
Ph-BBT CMPs are 3.0%, 0.7%, and 3.9%, respectively. 

The resulting TCH-TPA-Ph-BBT, TCH-TPE-Ph-BBT, and TCH-Py-Ph- 
BBT CMPs were subsequently dried in an oven at 37 ◦C for 24 h. The 
filtered 6 mm filter paper was soaked in TCH-loaded CMPs suspension, 
air dried, and then adhered to agar plates with a predetermined amount 
of either S. aureus or E. coli. The plates were cultured at 37 ◦C for 24 h, 
and the diameter of the zone of inhibition produced by the test samples 
was recorded and compared. The results of the zone of inhibition test 
against S. aureus [Fig. 6(a)] showed that when BBT-CMPs were loaded 
with TCH, a clear zone of inhibition was observed. For example, TCH- 
TPE-Ph-BBT, TCH-Py-Ph-BBT, and TCH-TPA-Ph-BBT CMPs showed 

zones of inhibition of 0.9 cm, 1.7 cm, and 1.4 cm, respectively. Fig. 6(b) 
illustrates the results obtained when testing the BBT-CMPs against E. coli 
bacteria. In this case, TCH-TPE-Ph-BBT, TCH-Py-Ph-BBT, and TCH-TPA- 
Ph-BBT CMPs exhibited inhibition zones measuring 0.7 cm, 1.7 cm, and 
1.1 cm, respectively. These outcomes suggest that the release of TCH 
was effective in inhibiting the growth of E. coli. The higher antimicrobial 
efficiency of TCH-Py-Ph-BBT CMP compared to TCH-TPA-Ph-BBT CMP 
and TCH-TPE-Ph-BBT CMP indicates a higher TCH content of Py-Ph-BBT 
CMP due to the high planarity of the Py units, which facilitates π–π 
stacking between them, as illustrated in Fig. 7. The excellent antimi-
crobial performance observed in the study can be attributed to the 
release of TCH from the loaded CMPs, which effectively inhibits bacte-
rial growth in the surrounding environment. Consequently, loading TCH 
onto CMPs enhances their antimicrobial activity. This study provides 
clear evidence that TCH-loaded CMP nanostructures exhibit 

Fig. 4. SEM (a-c) and TEM (d-f) images of (a, d) TPA-Ph-BBT, (b, e) TPE-Ph-BBT, and (c, f) Py-Ph-BBT CMPs.  

A.O. Mousa et al.                                                                                                                                                                                                                               



European Polymer Journal 196 (2023) 112254

7

antimicrobial activity. Furthermore, the antimicrobial effect of TCH 
primarily relies on the release of TCH from the TCH-loaded CMP 
nanostructures. TCH, a clinical antibiotic, can bind to the 16S rRNA of 
the bacterial ribosome’s 30S subunit. Consequently, the released TCH 
effectively interferes with protein synthesis, thereby inhibiting bacterial 
growth. Based on these findings, the adsorption of TCH onto CMPs with 
porous structural characteristics, followed by the subsequent release of 
TCH from the TCH-loaded CMP nanostructures, proves to be an effective 
strategy for inhibiting bacterial growth. 

Fig. 7 depicts the Py-Ph-BBT CMP, which contains Py moiety with 
numerous aromatic ring functional groups that can act as a π-electron 
acceptor. On the other hand, TCH has an aromatic ring structure and 
serves as a π-electron donor. The adsorption of TCH onto Py-Ph-BBT 
CMP is facilitated by the π-π interaction between the two molecules, 
aided by the porous nature of the CMP, which allows for pore filling. 
These factors collectively contribute to the adsorption of TCH onto Py- 
Ph-BBT CMP. Subsequently, upon exposure to both Gram-positive and 
Gram-negative bacteria, TCH is released from TCH-Py-Ph-BBT CMP, 
leading to the eradication of the bacteria and, thus, exhibiting an anti-
bacterial effect. 

4. Conclusion 

We used the Suzuki coupling reaction to create three distinct CMPs 
based on the BBT moiety: TPA-Ph-BBT, TPE-Ph-BBT, and Py-Ph-BBT 
CMPs. These new BBT-CMPs were fully characterized and exhibited 

tunable properties, such as thermal and porous features. For instance, 
TPE-Ph-BBT and TPA-Ph-BBT CMPs had Td10 at 554 and 491 ◦C, 
respectively, with a char yield of up to 71 wt%, as determined by TGA 
analysis. Furthermore, we assessed their cytotoxicity and biocompati-
bility in relation to L929 cells, revealing that they exhibited minimal 
toxicity and demonstrated high levels of biocompatibility. In addition, 
we used these CMPs as drug carriers for the antibiotic TCH and tested 
their antimicrobial activity against S. aureus and E. coli using the zone of 
inhibition method. Our results showed that TCH-TPE-Ph-BBT, TCH-Py- 
Ph-BBT, and TCH-TPA-Ph-BBT CMPs were effective in inhibiting the 
growth of E. coli and S. aureus. Notably, Py-Ph-BBT CMP, with its highly 
planar structure, exhibited the highest antimicrobial efficiency. Our 
study introduces a novel and significant approach to the utilization of a 
porous family of CMPs for biomedical applications via molecular engi-
neering. This innovative strategy offers promising prospects for drug 
carriers, drug delivery systems, and bioimaging applications, presenting 
a range of potential candidates. 
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