
European Polymer Journal 189 (2023) 111980

Available online 9 March 2023
0014-3057/© 2023 Elsevier Ltd. All rights reserved.

Ultrastable two-dimensional fluorescent conjugated microporous polymers 
containing pyrene and fluorene units for metal ion sensing and 
energy storage 

Mohamed Gamal Mohamed a,b,*, Huan-Yu Hu a, Manivannan Madhu c, Maha Mohamed Samy a,b, 
Islam M.A. Mekhemer b,d, Wei-Lung Tseng c, Ho-Hsiu Chou d, Shiao-Wei Kuo a,e,* 

a Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center of Crystal Research, National Sun Yat-Sen 
University, Kaohsiung 804, Taiwan 
b Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt 
c Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan 
d Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan 
e Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan   

A R T I C L E  I N F O   

Keywords: 
Conjugated microporous polymers 
Coupling reaction 
Metal ion sensing 
Electrochemical performance 

A B S T R A C T   

This study aims to synthesize three conjugated microporous polymers (CMPs) [Py-F CMP, TPE-F CMP, and TBN-F 
CMP] via the Suzuki coupling reaction of 9,9-dihexylfluorene-2,7-diboronic acid [F-B(OH)2] with three bromi
nated derivatives, pyrene (Py), tetraphenylethylene (TPE), and tetrabenzonaphthalene (TBN). The functional 
groups and chemical structures of the three synthesized CMPs were confirmed using FTIR and solid-state NMR 
analyses. Thermogravimetric analysis (TGA) revealed that TBN-F CMP has the most outstanding Td10 = 418 ◦C 
and char yield = 63.3 wt% compared to the other two samples. The BET surface area and average pore size of 
TBN-F CMP were measured to be 200 m2 g− 1 and ca. 1.8 nm, respectively. Furthermore, with excellent pho
toluminescence (PL) properties, all three new CMPs were well characterized using a spectrophotometer, and the 
fluorescence emission spectra were clearly drawn. As a result, we found that Py-F CMP can detect Pb2+ ions 
specifically and selectively compared to the other two CMPs. The sensitivity of Pb2+ was calculated and fitted 
with linear coefficients (R2 = 0.9752) to determine the Pb2+ ion concentration over the ranges of 0.1–2.0 µM, 
and the detection limit was estimated to be 0.01 µM. Finally, with outstanding capacitance and stability of up to 
195 F g− 1 and 90% over 2000 cycles, TBN-F-based CMP has been successfully applied to electrochemical 
measurements.   

1. Introduction 

Energy is the most essential requirement for the life and advance
ment of human civilization. In such situations, a serious scarcity of 
conventional fossil fuels is seen these days, which might be due to 
several reasons, such as rapid growth of the economy, society, and the 
increasing rate of environmental contamination [1–10]. Although there 
are many alternative methods to eliminate these demands, such as 
renewable sources of energy, such as solar power, wind energy, and 
geothermal energy, it is still not a smart idea as they not only focus on 
providing electricity but also crise their raw material [11–13]. Addi
tionally, the increase in global warming demonstrates that fossil fuels 

also affect ecosystems because of continued carbon dioxide (CO2) 
emissions [14]. Therefore, considering these impacts and addressing the 
current situation, it is crucial to develop materials that can effectively 
handle the energy-storage process. Recently, there have been a few 
existing materials that have become trends with high storage densities, 
such as lithium (LIBs), sodium (SIBs), and potassium (KIBs)-ion batteries 
[15]. However, there are certain challenges in using such materials in 
actual applications, such as the complexity of obtaining higher power 
density and high efficiency while also achieving time, safety issues, and 
aging effects [16,17]. 

Supercapacitors (SCs) are often divided into three types based on 
their composition, structure, and operating principle: hybrid ion 
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capacitors (HICs), electric double-layer capacitors (EDLCs), and asym
metric capacitors (ACs). Such capacitors provide certain advantages 
such as long-term performance at high current densities, that is, the 
number of repeated cycles for charging and discharging lasts for an 
infinite number of cycles [18–20], and high coulombic efficiency 
[21,22]. Such exceptional qualities make SCs excellent candidates for 
electrical energy storage devices [23–25]. Moreover, these devices have 
been designed specifically to store energy by creating an electrical 
double layer at the junction of a liquid electrolyte and solid porous 
electrode [26]. The majority of these SCs fall into one of two categories: 
non-faradaic processes (such as EDLCs), which rely on the accumulation 
of electrical charge at the electrode–electrolyte interface, and faradaic 
processes (such as pseudocapacitors) that occur at the substrate surface 
of heteroatom-doped carbon materials, conductive polymers, and metal 
oxide/hydroxide systems, which feature rapid redox reactions [27–29]. 

Conjugated microporous polymers (CMP), since their discovery by 
the Cooper group, are commonly known as promising materials among 
other organic polymers owing to their attractive properties such as 
microporous structure and extendable π-conjugation network in the 
skeleton structure, which are used for various kinds of applications, 
including the storage of gases, catalysis, energy, and metal ion sensing 
[30–40]. Earlier studies provided information that using these polymers 
has been effective for supercapacitors and has demonstrated outstanding 
electrochemical performance [17–19]. CMPs materials may be formed 
with various architectures and characteristics because of the extensive 
range of extensible construction blocks during reactions [41–45]. For 
instance, CMPs have been created via oxidative polymerization and 
traditional coupling techniques such as Suzuki-Miyaura, Sonogashira- 
Hagihara, and Yamamoto coupling [46–50]. On the other hand, organic 
and polymeric luminophores are intriguing materials used in a variety of 
applications, including plastic lasers, light-emitting diodes, fluorescent 
chemosensors, and fluorescent probes [51–57]. Moreover, scientists 
have created various luminescent materials to meet the requirements of 
fluorescent organic dyes, fluorescent proteins, and quantum dots. 
Additionally, numerous luminescent organic compounds with hetero
cyclic or benzene units exhibit a quenching effect upon the addition of 
various analytes via aggregation [55,56]. Most fluorescent polymeric 
materials use benzene or heterocyclic rings as their primary emissive 
components [55,56]. Considering that CMPs also have a highly fluo
rescent nature, they can be easily prepared and modified for suitable 
applications [56]. The construction of fluorescent POPs with high 
luminescence densities can be facilitated using large π-conjugated units 
and assembled π-conjugated systems as building blocks [56]. More 
importantly, with tunable emission properties and space to attach many 
fluorophore units, we substituted various functional units with porous 
structures. Herein, the efficient Suzuki coupling reaction has been used 
to prepare different conjugated microporous polymers (CMPs) [namely, 
Py-F, TPE-F, and TBN-CMPs] containing F, Py, TPE, and TBN, respec
tively. The molecular structure, morphology, porosity, and thermal 
stability of these materials were carefully investigated using FTIR, BET, 
TGA, SEM, TEM, and solid-state NMR measurements. 

2. Experimental section 

2.1. Materials 

Dichloromethane (DCM), F-B(OH)2, bromine solution (Br2), pyrene 
(Py), potassium carbonate (K2CO3), 4-bromophenylboronic acid [BrBzB 
(OH)2], and Pd(PPh3)4 were purchased from Sigma–Aldrich. Methanol 
(MeOH), iron chloride (III), and acetic acid (AcOH) were ordered from 
Acros. 1,3,6,8-Tetrabromopyrene (Py-Br4), and tetraphenylethene (TPE) 
were produced using previously published methods [58–60]. PbNO3, 
CuCl2, ZnCl2, HgCl2, NiCl2, COCl2, FeCl2, and MnCl2 were purchased 
from Sigma-Aldrich. 

2.2. Synthesis of 1,3,6,8-tetrakis(4-bromophenyl)pyrene (Py-Ph-Br4) 

To synthesize Py-Ph-Br4, a combination of BrBzB(OH)2 (3.6 g, 22 
mmol), K2CO3 (4.26 g, 30.8 mmol), Py-Br4 (2 g, 3.8 mmol), and Pd 
(PPh3)4 (0.80 g, 0.68 mmol) was taken under vacuum condition and was 
degassed subsequently. After adding 50 mL of 1,4-dioxane, the mixture 
was maintained at approximately 100 ◦C for 48 h. Finally, after 48 h, the 
residue was gently removed by filtering and washed with suitable sol
vents such as MeOH and H2O. The obtained yellow product from the 
filtration was subsequently dried for a couple of days at 80 ◦C to obtain a 
fine yellow powder [Scheme S1], and its chemical structure was 
confirmed using FTIR (KBr, cm− 1): 3027, 1597, 676. 1H NMR (Fig. S1): 
8.25–7.42 (aromatic protons). HR-FD-MS: m/z: 822.90 (Fig. S2). Py-Ph- 
Br4 had Td10 = 281 ◦C and char yield = 48 wt% (by TGA analysis, 
Fig. S3). 

2.3. Synthesis of Tetrakis(4-bromophenyl)ethylene (TPE-Br4) 

DCM (150 mL), TPE (4.0 g, 12.04 mmol), and acetic acid (50 mL) 
were directly added to the round-bottom flask and covered with 
aluminum foil to change the mixture to 0 ◦C using a salt-ice-water so
lution. Next, Br2 (4.0 g, 50 mmol) was added to the reaction solution 
under constant stirring, and the solution was stirred overnight. To obtain 
the crude product, the solution was washed with sodium thiosulfate, 
extracted using DCM, and dried with MgSO4. The formed precipitate 
was recrystallized twice with ethanol and air-dried to provide TPE-Br4 as 
a white solid [Scheme S2]. At last, TPE-Br4 was confirmed using FTIR 
(KBr, cm− 1): 3051, 1572. 1H NMR (500 MHz, CDCl3, Fig. S4): 7.27 (8H), 
6.86 (8H). 13C NMR (125 MHz, CDCl3, Fig. S5): 142.30–121.80. Td10 =

354 ◦C and char yield = 0.7 wt% (by TGA analysis, Fig. S6). 

2.4. Synthesis of 2,7,10,15-Tetrabromotetrabenzonaphthalene (TBN- 
Br4) 

TPE-Br4 (1.0 g, 1.54 mmol) was subsequently mixed in dry DCM (40 
mL) under the presence of a nitrogen atmosphere. Following that, a 
septum was used to add solutions of FeCl3 (4.54 g, 27.2 mmol) in dry 
nitromethane (10 mL) to the reaction mixture. The materials were 
warmed at reflux for approximately 4 h before being cooled to room 
temperature. The reaction was stopped by adding 50 mL of methanol. 
The chemical components were then extracted with CHCl3, washed with 
a diluted NaHCO3 solution, and evaporated until dryness to obtain TBN- 
Br4 as a yellow solid (0.71 g, 76%, Scheme S3); FTIR (KBr, cm− 1, 
Fig. S7): 3078 (aromatic C–H), 1594 (C––C), 591. 1H NMR (500 MHz, 
CDCl3, Fig. S8): 7.77 (s, 4H), 8.42 (s, 4H), 8.73 (s, 4H). 13C NMR (500 
MHz, CDCl3, Fig. S9): 135.70, 132.40, 127.80, 119.20, 103.50, 101.60. 
Td10 = 431 ◦C and char yield = 46 wt% (by TGA analysis, Fig. S10). 

2.5. Synthesis of Py-F CMP 

In 150 mL of a two-necked flask, F-B(OH)2 (212 mg, 0.36 mmol), Pd 
(20.8 mg, 0.018 mmol), Py-Ph-Br4 (150 mg, 0.18 mmol), and K2CO3 
(194 mg, 1.4 mmol) were added to DMF (15 mL)/H2O (5 mL) to the 
reaction mixture. Then, the reaction solution was refluxed at 90 ◦C for 
72 h under N2. The precipitate material would be thoroughly filtered 
and washed with THF and acetone. Finally, the deep dark green solid 
was dried at 100 ◦C (0.24 g, 66%). 

2.6. Synthesis of TPE-F CMP 

The synthesis of TPE-F CMP was carried out using the same pro
cedures used for the preparation of Py-F CMP; TPE-Br4 (150 mg, 0.23 
mmol), F-B(OH)2 (270 mg, 0.46 mmol), K2CO3 (254 mg, 1.84 mmol), 
and Pd (26 mg, 0.023 mmol) to afford a light-green solid (0.29 g, 70%). 
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2.7. Synthesis of TBN-F CMP 

The synthesis of TBN-F CMP was carried out using the same pro
cedures used for the preparation of Py-F CMP; TBN-Br4 (100 mg, 0.16 
mmol), F-B(OH)2 (188 mg, 0.32 mmol), K2CO3 (177 mg, 1.28 mmol), 
and Pd (18 mg, 0.016 mmol) to give a light-green solid (0.21 g, 72%). 

2.8. Sensing of Pb2+ ions 

To investigate the sensing analytes, initially, the known amount of 
Py-F CMP (1 mg/mL) was taken and partially suspended in ultra-pure DI 
water via ultrasonication method for 30 mins. Finally, the partially 
dispersed clear Py-F CMP were collected separately in a different 
centrifuge tube. Then the known volume of the above solution [300 μL] 
was taken, and the different concentrations of Pb2+ (200 μL; 0.10–500 
µM) were included alongside followed by observing the mixture at the 
ambient condition with shaking under vortex. After 5–10 mins, the 
resultant final mixed solution was taken in the quartz cuvette (1 mL 
volume), and their PL emission curve was recorded by fixing the exci
tation wavelength at 360 nm. 

2.9. Interference assay for Pb+ ion 

To know the effect of Pb2+ sensing with Py-F CMP, the same pro
cedure mentioned above for Py-F CMP was executed. But substituting 
various other metal ions such as Fe2+, Zn2+, Co2+, Mn2+, Cr3+, Cu2+, 
Hg+, and Ni2+ [500 µM] in the place of Pb2+. The interference assay of 
the other two probes such as TPE-F CMP and TBN-F CMP has also 
evolved simultaneously accordingly to the protocol applied for Py-F 
CMP. 

3. Results and discussion 

3.1. Synthesis and characterization of Py-F CMP, TPE-F CMP, and TBN- 
F CMP 

The target Py-F, TPE-F, and TBN-F CMPs was constructed and pre
pared by using the Suzuki coupling reaction, and the synthetic route of 
F-based CMPs is shown in Fig. 1. The Py-Ph-Br4 monomer was prepared 
through the reaction of Py-Br4 with BrBzB(OH)2 in the presence of 1,4- 
dioxane and Pd as the catalyst [Scheme S1]. The TPE molecule was 

brominated with neat Br2 in the mixture of DCM and AcOH to access 
TPE-Br4 as a white powder [Scheme S2]. Finally, TPE-Br4 has converted 
to TBN-Br4 [Scheme S3] in the presence of DCM/CH3NO2,/catalytic 
amount of anhydrous FeCl3. The chemical structure of the synthesized 
Py-Ph-Br4, TPE-Br4, and TBN-Br4 monomers were proven by using FTIR 
and NMR spectroscopy [as shown in the experimental part]. The ab
sorption peaks at 3080, 3060, and 3078 cm− 1 in the FTIR spectra of all 
synthesized monomers are attributed to the aromatic CH stretching 
[Figs. S11-S13]. The peaks were centered at 1589, 1573, and 1620 cm− 1 

corresponding to the C––C group in the Py-Ph-Br4, TPE-Br4, and TBN-Br4 
structures. The FTIR spectrum of the F-B(OH)2 [Fig. S11] featured the 
absorption bands at 3348, 2920, and 1598 cm− 1 for the hydroxyl group 
(OH), aromatic CH stretching, and C––C groups, respectively. The syn
thetic route of the F-based CMPs is shown in Fig. 1. The reaction of F-B 
(OH)2 with Py-Ph-Br4, TPE-Br4, and TBN-Br4 in the presence of K2CO3 
and Pd in a mixture of DMF/H2O to access Py-F CMP, TPE-F CMP and 
TBN-F CMP, respectively, as a green powder with a moderate yield up to 
70%. 

The presence of functional groups in the obtained F-based CMPs was 
determined using FTIR analyses, as presented in Fig. 2(a) and Figs. S11- 
S13. As shown in Fig. 2(a), the absorption peaks of Py-F CMP appear at 
1608 and 2920 cm− 1 represent the involvement of C––C and aliphatic 
C–H group, respectively. The FTIR profile of TPE-F CMP shows a similar 
type of absorption peak that emerged at 2924, 1467, and 1605 cm− 1 

indicating the involvement of the aliphatic C–H stretching, C––C along 
with the aromatic ring. For the TBN-F CMP sample, the major functional 
groups located at 1466, 1607, and 2921 cm− 1 are due to the existence of 
aromatic and aliphatic CH units in the F moiety. In addition, the ab
sorption peaks of the C–Br and B–O groups were completely dis
appeared in all FTIR profiles of F-CMPs materials [Fig. 2(a) and 
Figs. S11-S13]. All these absorption bands in their FTIR spectra confirm 
the successful synthesis of these F-based CMPs. 13C solid-state NMR 
spectra of F-based CMPs are shown in Fig. 2(b). The peaks located in the 
range 44–72 ppm and 96–164 ppm for Py-F CMP, TPE-F CMP, and TBN- 
F CMP correspond to their hexyl carbons in the F unit and aromatic ring 
carbons in their framework, respectively. The above FTIR and NMR 
analyses confirmed the successful synthesis of F-based CMPs [Fig. 1]. 
Fig. 2(c) displays the thermal stability of Py-F CMP, TPE-F CMP, and 
TBN-F CMP. The TGA analyses of three new F-based CMPs were tested 
under N2 and indicated 10% weight losses of Py-F CMP, TPE-F CMP, and 
TBN-F CMP were 410, 409, and 418 ℃, respectively. Furthermore, the 

Fig. 1. Synthesis of the (a) Py-F, (b) TPE-F, and (c) TBN-F CMPs.  
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Fig. 2. (a) FTIR, (b) solid-state 13C NMR, (c) TGA traces, and (d) XRD patterns of the Py-F, TPE-F, and TBN-F CMPs.  

Fig. 3. (a-c) SEM images, EDS mapping (d-i) and (j-l) TEM images of Py-F (a, d, g, j), TPE-F (b, e, h, g) and TBN-F CMPs (c, f, i, l).  
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char yields at 800 ℃ for Py-F, TPE-F, and TBN-F CMPs were found to be 
62.8, 55.0, and 63.3 wt%, respectively. Based on TGA measurements, 
our obtained F-based CMPs possessed good thermal stability due to their 
high crosslinking density. The amorphous character of the F-based CMPs 
materials was investigated by powder X-ray diffraction (PXRD) [Fig. 2 
(d)]. 

The morphologies of the porous Py-F CMP, TPE-F CMP, and TBN-F 
CMP were further examined using field emission scanning electron mi
croscopy (FE-SEM) and high-resolution transmission electron micro
scopy (HR-TEM) [Fig. 3]. FE-SEM imaging revealed that all three F- 
CMPs included tiny aggregated spherical particles [Fig. 3(a)–(c)]. The 
abundance of bright and alternating dark patches on the HR-TEM im
ages [Fig. 3(d)–(f)] suggested that all of the F-CMPs had porous net
works. The EDS analysis of the F-based CMPs [Fig. 3] verified the 
presence of carbon atoms and their uniform distribution across the 
framework of the F-CMPs. 

The pore size, total pore volume, and surface area of the as- 
synthesized F-based CMP materials were measured using nitrogen 
adsorption–desorption analyses. The nitrogen adsorption–desorption 
isotherms of the F-based CMP materials are shown in Fig. 4, where the 
isotherms were characterized as type I with minor hysteresis loops for 
Py-F and TPE-F CMPs [Fig. 4(a) and (b)] and as type IV isotherms with 
large hysteresis loops for TBN-F CMP framework [Fig. 4(c)]. The rapid 
quantity of N2 absorption in the low and high-pressure zone indicates 
the existence of microporosity and interparticle porosity in the as- 
synthesized TBN-F CMP framework. The surface areas of the Py-F, 

TPE-F, and TBN-F CMPs materials are calculated to be 40, 55, and 
200 m2 g− 1, respectively, using Brunauer Emmett Teller (BET) method. 
The comparable pore volumes of Py-F, TPE-F, and TBN-F CMPs frame
works determined repeatedly are 0.15, 0.18, and 0.68 cm3 g− 1. Using 
NLDFT (nonlocal density functional theory) approach, the correspond
ing average pore sizes of Py-F, TPE-F, and TBN-F CMPs were found to be 
ca. 2.7, 2.4 and 1.8 nm, respectively, as indicated in Fig. 4(d)-4(f). 

3.2. Fluorescence properties and metal sensing of Py-F CMP, TPE-F CMP, 
and TBN-F CMP 

To understand their fluorescence properties in their highly concen
trated powdered CMP with Py-F, TBN-F, and TPE-F were taken in a 
centrifuge tube and suspended in ultrapure DI water under sonication 
treatment. Then, after 5–10 mins, the dispersed sample solution was 
changed in another centrifuge tube for other experimental analysis. To 
characterize the optical properties of those CMP 0.5 mL of each solution 
were used, and their emission curve was checked using a fluorescence 
spectrophotometer (HITACHI F7000). As per Fig. 5(a-c), all three kinds 
of CMP show strong fluorescence intensity individually at around 486, 
488, and 526 nm for Py-F CMP, TBN-F CMP, and TPE-F CMP, respec
tively. In addition, the obtained emission wavelength was shows similar 
properties like of earlier reported materials [61–64]. In addition, the 
obtained emission wavelength was independent of their corresponding 
excitation wavelength (from 300 to 480 nm), which was opposite to that 
of other reported probes that take them to other exciting applications. 
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Based on the absolute calculation methods the QY % (measured with 
Edinburgh FS5 spectrofluorometer, UK) for the synthesized CMPs are 
known to be 1.2, 2.1 and 1.7% for Py-F CMP, TPE-F CMP, and TBN-F 
CMP, respectively. Next, the above-mentioned F-CMPs were evidenced 
separately from different kinds of metal ions like Fe2+, Zn2+, Co2+, 
Mn2+, Fe3+, Cu2+, Hg+, and Ni2+, and the results in more fluorescence 
fluctuating were observed for TPE-F CMP and TBN-F CMP than that of 
Py-F-CMP [Fig. 5(d-f)]. At last, solid evidence was obtained and con
clusions were brought to focus only on Py-F-based CMP and to analyze 
the selective metal ions like Pb2+. 

Therefore, considering the high selectivity of the Py-F CMP toward 
Pb2+ we next determined the various concentrations of Pb2+, as per 
Fig. 6(a) at elevated concentration [0.1–500 µM], the Pb2+ continuously 
enhances their emission intensity that was recorded at 488 nm. Plotting 
the fluorescence intensity value with the multiple concentrations of 
Pb2+ gave linear calibration curves (Fig. S14). It should be noted that the 
stern Volmer fitting plot (Fig. 6(b)) indicates that the sensing was line
arly fitted at the range of 0.1–2.0 µM range. The correlation coefficients 
(R2) for this range were 0.9752 for determining Pb2+. The detection 
limit (LOD) of Pb2+ was calculated using the Eq. (1) given below. 

LOD = 3 × σ/K (1) 

Here, σ indicates the standard deviation of blank measurements five 
times. K represents the slope of the emission curve for excitation at 360 
nm versus the concentration of Pb2+ ion, and the detection limit of the 
Py-F CMP was estimated to be 0.01 µM [Table S1]. 

3.3. Electrochemical analysis of F-Based CMPs materials [Py-F, TPE-F, 
and TBN-F CMPs] 

We conducted galvanostatic charge/discharge (GCD) experiments 
and cyclic voltammetry (CV) testing on our as-prepared F-based CMPs to 
assess their electrochemical performance. Between − 1.0 and 0.0 V, we 
investigated the CV curves of the Py-F, TPE-F, and TBN-F CMPs, 

respectively [Fig. 7(a-c)]. Every F-based CMP displayed almost rectangle 
CV patterns with little humps at lower potentials, which supported EDLC 
behavior [65–68]. In addition, the current densities increased without 
affecting the shapes when the scan rate was increased from 5 to 200 mV 
s− 1. Furthermore, all of the CMPs having F moieties showed enhanced 
rate capabilities, reliabilities, and kinetic profiles since the current 
densities increased when the scan rate was increased from 5 to 200 mV 
s− 1 without affecting the shapes of the CV profiles. Most of the variation 
in electrochemical properties between the materials can be attributed to 
the porous structure and the availability of micro- and mesoporosity, 
which all guaranteed great access of the electrolyte to the electrode 
surface, resulting in rapid mass transport, and improved electrochemical 
performance [65–68]. The porous design of our F-based CMPs frame
work provides diffusing channels and more efficient electrolyte ion 
transport, improving the electrochemical efficiency [65]. Moreover, we 
evaluated the GCD performance of the Py-F, TPE-F, and TBN-F CMPs 
with current densities ranging from 0.5 to 20 A g− 1. The nearly trian
gular GCD profiles of all the CMPs, displayed a little twist along the 
discharge curve, indicating the combined effects of EDLC and pseudo
capacitance behavior [Fig. 7(d-f)]. 

Based on the GCD profiles, the specific capacitances of each F-based 
CMP were estimated [Fig. 8(a)]. The specific capacitance values for Py-F 
CMP were respectively 133.35, 43.08, 20.82, 14.46, 9.60, 7.63, 6.30, 
5.55, and 5.2 F g− 1, for TPE-F CMP, they were 100.75, 39.9, 17.56, 
12.81, 9.05, 7.42, 6.10, 5.07, and 4.52 F g− 1, whereas, for TBN-F CMP, 
they were 194.15, 56.2, 25, 18.51, 13.85, 11.69, 10.0, 8.55, and 8.05 F 
g− 1, at current densities of 0.5, 1, 2, 3, 5, 7, 10, 15, and 20 A g− 1, 
respectively. As a whole, TBN-F CMP outperformed all other samples 
regarding rate capability. This behavior may be attributed to the TBN-F 
CMP’s porous structure, which is mesoporous in nature as illustrated in 
Fig. 4(f), which enables electrolyte ions to permeate into the inner active 
sites at greater current densities, improving rate performance. Similarly, 
we studied the cycling stability profiles of all F-based CMPs materials 
using GCD evaluation at a current density of 10 A g− 1 for 2000 cycles to 

Fig. 5. (a-c) optical characterization: Excitation independent fluorescence spectrum (a) Py-F, (b) TBN-F, and (c) TPE-F CMPs. (d-f) Selectivity studies of the proposed 
probe towards Pb2+ of (d) Py-F, (e) TBN-F, and (f) TPE-F CMPs. 
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Fig. 6. Sensing of Py-F CMP toward Pb2+: (a) Quantification of Pb2+ ion with different concentrations [0.1 µM-200 µM] and (b) the Stern Volmer plot in the 
concentration range from 0.1–2.0 µM. 
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assess the stability of these electrode materials during extensive cycling 
testing [Fig. 8(b)]. Py-F, and TPE-F, TBN-F CMPs have managed to retain 
87.0, 71.1, and 9 % of their initial capacity, demonstrating their 
exceptional stability in aqueous 1 M KOH electrolyte as electrode ma
terial for energy storage devices. Finally, the energy density of the Py-F 
CMP, TPE-F CMP, and TBN-F CMP was calculated to be 14, 19, and 27 W 
h kg− 1, respectively [Fig. 8(c)]. 

4. Conclusion 

To conclude, the design and construction of fluorescent three novel 
2D F-based CMPs containing fluorene moieties were carried out through 
Suzuki coupling. The Py-F and TBN-F CMPs both showed high values of 
Td10 (410 and 418 ◦C, respectively), with char yields of up to 62 wt%, 
according to TGA. Among all synthesized F-CMPs, the TBN-F CMP had a 
high surface area of 200 m2 g− 1 and a pore volume of 0.68 cm3 g− 1. In 
addition, the Py-F CMP with their excellent optical behavior was spe
cifically and selectively used to detect Pb2+ ion. On the basis of these 
three F-CMPs, we then assessed the electrochemical performance of the 
three-electrode system. Compared to other porous polymers utilized as 
electrodes, the Py-F CMP and TBN-F CMP in the three-electrode findings 
produced specific capacities of 135 and 197 F g− 1, respectively, at a 0.5 
A g− 1 and higher cycle stability up to 90% [Table S2]. Because of their 
acceptable porosity characteristics, outstanding capacitances, straight
forward manufacture, and diverse morphologies, our F-linked CMPs 
appear to be viable candidate materials for use in metal ion sensing and 
energy storage. 
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