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Abstract: In this study, we used effective and one-pot Heck coupling reactions under moderate
reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-
P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of
octavinylsilsesquioxane (OVS) with different brominated pyrene (P-Br4), triphenylamine (TPA-Br3),
and fluorene (F-Br2) as co-monomer units. The successful syntheses of both OVS-HPPs were tested
using various instruments, such as X-ray photoelectron (XPS), solid-state 13C NMR, and Fourier
transform infrared spectroscopy (FTIR) analyses. All spectroscopic data confirmed the successful
incorporation and linkage of P, TPA, and F units into the POSS cage in order to form porous OVS-HPP
materials. In addition, the thermogravimetric analysis (TGA) and N2 adsorption analyses revealed
the thermal stabilities of OVS-P-F HPP (Td10 = 444 ◦C; char yield: 79 wt%), with a significant specific
surface area of 375 m2 g–1 and a large pore volume of 0.69 cm3 g–1. According to electrochemical three-
electrode performance, the OVS-P-F HPP precursor displayed superior capacitances of 292 F g−1 with
a capacity retention of 99.8% compared to OVS-P-TPA HPP material. Interestingly, the OVS-P-TPA
HPP showed a promising HER value of 701.9 µmol g−1 h−1, which is more than 12 times higher than
that of OVS-P-F HPP (56.6 µmol g−1 h−1), based on photocatalytic experimental results.

Keywords: porous organic/inorganic polymers; octavinylsilsesquioxane; triphenylamine; fluorene;
supercapacitor; hydrogen production

1. Introduction

Supercapacitors (SCs) are regarded as an alternative technology to fuel cells, the usual
capacitor, and batteries. They acquired widespread interest compared with other batteries
and conventional capacitors due to their lower environmental impact, prolonged cycle
life, and higher power capability [1–8]. SCs have two common types: electrode–electrolyte
interfaces in electric double-layer capacitors (EDLCs), which are followed by physical
adsorption; and pseudocapacitors, which involve faradaic interactions that occur between
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the electrolyte and organic moieties or active metal oxides [9–16]. As research advances,
scientists are no longer concentrating only on developing the energy density of superca-
pacitors but are focusing more on improving the multifunctionality of supercapacitors,
such as elastic wearable supercapacitors, smart energy storage windows, electrochromic
supercapacitors (ESCs), self/charging supercapacitors, and so on [17–22]. Significantly,
the performance of the supercapacitor is related to the electrode material which should
fulfill the following advantages: higher electrical conductivity in order to facilitate high-
rate capabilities and power densities, a large specific surface beside porosity, outstanding
compatibility in order to ease ion diffusion and the ion/attainable surface area, and good
distribution of pore size in order to achieve high specific capacitance and effective charge
storage [23–33]. Hence, the most widespread materials that are utilized as the electrodes
in SC applications are redox organic molecules, porous carbon materials, metal oxides,
sulfides, hydroxides, and conjugated polymers (i.e., microporous polymers) because of
their high surface area, versatility, adjustable porosity, obtainable raw materials, high elec-
trical conductivity, high sustainability, and their remarkable stability under a large range of
potential windows [34–42].

Porous organic polymers and porous organic hybrid polymers containing polyhedral
oligomeric silsesquioxanes (POSS) have been immensely exercised in numerous applica-
tions, including hydrogen production, gas capture, chemical sensing catalysis, microelec-
tronics, aerospace, iodine capture, biomedicine, water treatment, and energy storage [43–48].
In particular, cubic silsesquioxane molecules, which are considered an important kind of
polyhedral oligomeric silsesquioxane, have attracted considerable attention in the scientific
society, owing to their wonderful design from inorganic/organic hybrid materials, high
surface area, tunable chemical properties, optical transparency, excellent mechanical tough-
ness, and thermal stability [43–52]. The above molecules have a formula of (RSiO1.5) with a
nanoscale diameter of about 1–3 nm which contain inorganic cages in their structures that
provide superior advantages, as mentioned before [53–57]. Subsequently, various prepa-
ration methods have been reported in order to synthesize porous polymers using cubic
silsesquioxane molecules as the building unit, such as the Heck coupling reaction which
achieves the demand of preparing clean and low-price materials with high-performance
capabilities for energy storage devices and other applications. For example, Ervithaya-
suporn’s group used a porous polymer nanocomposite based on OVS and porphyrin for
capturing heavy metal anions and ions [58]. Zhang et al. prepared azo porous materials
containing OVS as a cage and porphyrin for removing RhB and various metal ions from
wastewater [59].

Motivated by these earlier reports, here, we have prepared two porous OVS-P-TPA
and OVS-P-F HPPs with high yield using the Heck coupling reaction of the OVS cage
with two different brominated comonomers (P/TPA and P/F) in the presence of Pd as
a catalyst under moderate reaction conditions, as presented in Scheme 1. The molecular
chemical structures, thermal stability (including temperature decomposition and carbon
residues), crystallinities, surface morphologies, and porosity properties of the OVS-P-TPA
and OVS-P-F HPPs were carefully investigated and discussed in detail using Brunauer–
Emmett–Teller (BET) surface areas, X-ray photoelectron (XPS), and Fourier transforms
infrared spectroscopy (FTIR) analyses. For the real application of these porous hybrid
materials, two OVS-P-TPA and OVS-P-F HPPs were applied, and the electrochemical
three-electrode performance and H2 evolution from water splitting were assessed. The
data revealed that the POSS-P-F HPP precursor displayed high specific capacitances of
292 F g−1 with a capacity retention of 99.8% compared to the POSS-P-TPA HPP material.
Interestingly, the OVS-P-TPA HPP shows a promising HER value of 701.9 µmol g−1 h−1

based on photocatalytic experimental results.
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Scheme 1. Preparation route of (a) OVS-P-TPA HPP and (b) OVS-P-F HPP through the Heck
coupling reaction.

2. Materials and Methods
2.1. Materials

Octavinylsilsesquioxane (OVS), potassium carbonate (K2CO3), Pd(PPh3)4, iron(III)
chloride (FeCl3), pyrene (P), bromine (Br2), N-bromosuccinimide (NBS), nitrobenzene,
triphenylamine (TPA), and fluorene (F) were ordered from Alfa Aesar. All the organic
solvents were obtained from Acros.

2.2. Synthesis of P–Br4 [60,61]

Nitrobenzene (60 mL), Br2 (4 mL), and P molecules (2.00 g, 10 mmol) were introduced
into a 100 mL two-necked flask that was filled with nitrogen. The mixture was then heated
at 120 ◦C for 24 h, and the resulting P–Br4 was washed with EtOH before drying in a
vacuum-sealed oven at 50 ◦C (4 g, 93%, Scheme 1). FTIR (Figure S1): 3053 (aromatic
C–H stretching).

2.3. Synthesis of TPA-Br3 [39]

DMF (40 mL), NBS (3.00 g, 17.25 mmol), and TPA (1.38 g, 5.62 mmol) were combined
in a 200 mL two-necked flask in an N2 atmosphere for 24 h at room temperature. Next,
300 mL of water and 200 mL of DCM were added to the reaction mixture. The DCM
layer was dried over MgSO4 and evaporated in order to attain a white powder (2.83 g,
92%). M.p.: 142 ◦C (DSC, Figure S2). FTIR (Figure S3): 3078 (aromatic C–H stretching).
1H-NMR (Figure S4): 6.94–7.35 (aromatic protons).13C NMR (Figure S5): 146.80, 133.20,
126.20, and 116.40.
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2.4. Synthesis of 2,7-Dibrmo-9H-Fluorene (F–Br2) [20]

F (4.00 g, 24.0 mmol), Br2 solution (1.29 mL, 25.27 mmol), CHCl3 (50 mL), and FeCl3
(0.134 g, 2.40 mmol) were injected into a 100 mL two-necked flask in an N2 atmosphere. The
reaction was then held in the dark for 4 h. After this, CHCl3 was removed under a vacuum
system in order to obtain F–Br2 as a white powder (7.80 g, 89%, Scheme S3). M.p.:165 ◦C
(DSC, Figure S6). FTIR (Figure S7): 3056 (aromatic C–H stretching). 1H NMR (Figure S8):
3.90 (S, 2H) and 7.51–7. 66 (aromatic protons). 13C NMR (Figure S9): 145.36, 140.13, 130.98,
128.35, 122.06, and 36.69.

2.5. Synthesis of OVS-P-TPA HPP and OVS-P-F HPP

A mixture of DMF (25 mL), Pd(PPh3)4 (0.032 g, 0.27 mmol), TPA-Br3 (1.45 g, 3 mmol)
or F-Br2 (0.97, 3 mmol), OVS (0.5 g, 0.79 mmol), P-Br4 (0.04 g, 0.08 mmol), and K2CO3 (1.1 g,
7.9 mmol) was charged into a 50 mL two-necked round flask under an N2 atmosphere. The
obtained solution was heated at 100 ◦C for 72 h. The solid was filtered and washed many
times with water, THF, methanol, and acetone in order to obtain a red powder for OVS-P-
TPA HPP (yield: 85%) and a yellow powder for OVS-P-F HPP (yield: 80%). The schematic
route of OVS-P-TPA HPP and OVS-P-F HPP is displayed in Scheme 1a,b, respectively.

2.6. Photocatalytic H2 Evolution Experiment

In a typical measurement, 5 mg of OVS-P-TPA HPP or OVS-O-F HPP photocatalyst
was dispersed by sonication in a 10 mL solution (water/MeOH (2/1)) containing 0.1 M
ascorbic acid (AA), which was then inserted into the reaction glass container and sealed
tightly with a rubber septum. Prior to illumination, the aerobic oxygen was removed from
the sample by evacuating the solution mixture and then exposing it to a continuous stream
of Ar gas for 30 min. The catalyst solution was exposed to light from a 350 W Xe lamp
(1000 W m−2; λ > 380 nm) that had passed through a 380 nm band-pass filter. Using a
gas-tight syringe, the hydrogen sample was taken every hour and injected in a Shimazhu
GC-2014 gas chromatograph, using Ar as the carrier gas. Hydrogen was detected with
a thermal conductivity detector, referring to the standard hydrogen gases with known
concentrations [62,63].

2.7. Computational Details

The density functional theory (DFT) of the DMol3 code [64] was used in order to obtain
the optimized structure and electronic properties. The generalized gradient approximation
of the Perdew–Burke–Ernzerhof functional (GGA + PBE) was adopted throughout all the
calculations [65]. The system’s energy was converged to 10−5 Ha, and the max force and
the max displacements were 0.002 Ha/Å and 0.005 Å, respectively. In order to ensure
self-consistent field (SCF) convergence accuracy, a self-consistent field (SCF) was converged
to 10−6 Ha. In addition to their electron densities, the energy levels of the highest occupied
molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were
computed [66].

3. Results
3.1. Synthesis and Characterization of OVS-P-TPA and OVS-P-F HPPs

The preparation route of OVS-HPPs (OVS-P-TPA and OVS-P-F HPPs) is presented
in Scheme 1. First, the P-Br4 monomer was synthesized using the bromination reaction of
P with Br2, using nitrobenzene as a solvent, as shown in Scheme S1. Secondly, TPA-Br3
was easily synthesized through the reaction of TPA with Br2 solution in DMF at 25 ◦C
(see Scheme S2). Finally, F-Br2 was prepared with a high yield through the reaction of
the F molecule with Br2 in CHCl3 (see Scheme S3). The NMR and FTIR data of the P-Br4,
TPA-Br3, and F-Br2 monomers in this study confirmed their successful synthesis [see the
experimental part of this study]. Scheme 1 displays the synthesis route for the synthesis of
our two new porous hybrid polymers (OVS-HPPs) based on the OVS unit (named OVS-
P-TPA and OVS-P-F HPPs) via a simple and efficient Heck coupling reaction in a mixed
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solution containing DMF, K2CO3, and Pd as a catalyst. The mole ratios between all the
monomers (OVS/TPA-Br3 or F-Br2/P-Br4), which were used in the preparation of the OVS-
HPPs, was 1:3.8:0.1 [67]. We used this ratio to get a high surface area of these HPP materials
and to increase the amount of pyrene moiety content as a donor unit in the HPP framework
in order to adjust the energy band gap and investigate their potential applications in energy
storage and hydrogen evolution. The OVS-P-TPA HPP was obtained through the reaction
of OVS with P-Br4 and TPA-Br3. This reaction produced OVS-P-TPA as a red powder
[Scheme 1a]. OVS-P-F HPP was obtained through the reaction of OVS with P-Br4 and F-Br2,
which produced a yellow solid [Scheme 1b]. After completing the Heck coupling reaction,
we revealed that the obtained OVS-HPP materials were not soluble in MeOH, H2O, DMF,
DCM, THF, and acetone, indicating that our porous OVS-HPPs had a high crosslinking
density and a high degree of polymerization. The matching bands for stretching Si-O-Si,
C=C, and C=C-H groups in the OVS compound showed at 1107, 1600, and 3066 cm−1,
respectively, as shown in Figure 1a. According to Figure 1a,b, Figures S10 and S11, the
band of the C-H aromatic in P-Br4, TPA-Br3, and F-Br2 are represented at 3053, 3078, and
3056 cm−1, respectively. Figure 1a,b, Figures S10 and S11 show that the peaks for aliphatic
C-H and C=C units in the FTIR profiles of the OVS-P-TPA and OVS-P-F HPPs were found
in the ranges of 2981–2964 and 1600–1590 cm−1, respectively. As anticipated, the Si-O-Si
absorption bands in both the OVS-P-TPA and the OVS-P-F HPPs (Figure 1a,b) were wider
compared to the Si-O-Si unit in the OVS compound (Figure 1). This was attributed to
the development of cross-linked networks. Figure 1c reveals that the signal for aromatic
carbons appeared in the range of 142–117 ppm for OVS-P-TPA HPP and 146–114 ppm
for OVS-P-F HPP. The signal of the carbon nuclei of the C-N unit appeared at 146 ppm
for OVS-P-TPA HPP. In addition, in the 13C NMR solid-state profile, OVS-P-F HPP had
a signal located at 36.6 ppm, corresponding to the CH2 group. Moreover, the presence
of OVS cage units in all the OVS-HPP materials was proven using 29Si NMR solid-state
profile (Figure 1d). The two OVS-HPP samples displayed two signals centered near −14
and −80 ppm due to the Si-C=C and T3, respectively.
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Figure 2. XPS analysis of (a) OVS-P-TPA HPP and (b) OVS-P-F HPP.

Figure 3 displays the thermogravimetric analysis (TGA) profiles of OVS-P-TPA HPP
and OVS-P-F HPP and their corresponding building blocks under an N2 atmosphere at
800 ◦C. The OVS-P-F HPP showed thermal decomposition temperatures of Td5, Td10 with a
char yield at 228, 283 ◦C, and 51 wt%, respectively. For OVS-P-TPA HPP and OVS-P-F HPP;
these were 349, 444 ◦C and 79 wt%, respectively. Interestingly, after the Heck polymerization
reaction, both OVS-HPPs possessed outstanding thermal stability properties compared
with their building blocks, as shown in Figure 3a,b. The thermal stability results (including
Td5, Td10, and the char yields) of the OVS-HPPs and all the synthesized monomers used
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in this study are summarized in Table 1 and Table S1. The X-ray patterns (Figure S12)
displayed amorphous characteristics for the OVS-HPPs materials. In addition, a gradual
high X-ray diffraction peak can be seen at 2θ = 22◦ for the presence of Si-O-Si groups in the
OVS cage [67].
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Table 1. TGA, BET, and capacitance data for the OVS-HPPs materials.

Sample Td10
(◦C)

Char Yield
(wt.%)

Surface Area
(m2 g–1)

Pore Volume
(cm3 g–1)

Pore Size
(nm)

Capacity at
0.5 A g–1

(F g–1)

OVS-P-TPA HPP 283 51 60 0.19 2.56 71
OVS-P-F HPP 444 79 375 0.69 2.2 296

In order to confirm the porosity properties of the OVS-HPPs, the BET analyses were
performed at 77 K and 1 bar (Figure 4). According to the IUPAC classification, the N2
isotherm profile for the OVS-P-TPA HPP sample (Figure 4a) was type III, and for the
OVS-P-F HPP framework was the type I and IV (Figure 4b). OVS-P-TPA HPP contains
mainly meso- and macro-pores, and OVS-P-F HPP shows a mix of micro- and mesopores at
high relative pressures (P/P0 > 0.9), based on BET analyses. The specific surface area and
total pore volumes of the OVS-P-TPA and OVS-P-F HPPs were 60 m2 g −1 and 0.19 cm3,
and 375 m2 g −1 and 0.69 cm3 g −1, respectively (Table 1). We used the nonlocal density
functional theory method to calculate the pore size distribution for the OVS-HPPs materials
(Figure 4c,d), and the pore diameters were found to be 2.56 and 2.20 nm, respectively, for
the OVS-P-TPA and OVS-P-F HPPs. In addition, the relative content of micropores for the
OVS-P-TPA and OVS-P-F HPPs was 0.12 and 0.21, respectively.
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Figure 4. BET and pore size profiles of (a,c) OVS-P-TPA HPP and (b,d) OVS-P-F HPP.

The shape and porosity parameters of the OVS-HPPs were evaluated using SEM and
TEM measurements (Figure 5). The OVS-P-TPA and OVS-P-F HPPs featured irregular
aggregated sphere structures and aggregated irregular cloud-like structures, respectively,
according to the SEM images (Figure 5a,b). Moreover, the TEM images of the OVS-HPP
materials are shown in Figure 5c,d; the images revealed the presence of pinholes and the
presence of dark and bright regions in their structures.
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3.2. Electrochemical Analysis of the OVS-P-TPA and OVS-P-F HPPs

A three-electrode setup was used to examine the electrochemical performance of the
OVS-HPP materials (OVS-P-TPA and OVS-P-F HPPs) using cyclic voltammetry (CV) and
galvanostatic charge–discharge (GCD) measurements. Figure 6a,b shows the CV curves of
the two synthesized OVS-HPP frameworks and the configuration of the electrochemical cell
used for the measurements. The voltage windows ranged from 0.00 to 1.00 V (vs. Hg/HgO)
at a sweep speed ranging from 5 to 200 mV s−1. Furthermore, when recorded at the
highest scan rate of 200 mV s−1, the CV curves of the OVS-HPP samples showed rectangle-
shaped shapes with the appearance of humps, indicating that this capacitive response was
primarily caused by EDLC with a small amount of pseudocapacitance [2,12,35,69]. The
integrated area of the OVS-P-F HPP sample was higher than that of the OVS-P-TPA HPP
sample, revealing its superior electrochemical performance. This superior electrochemical
performance of the OVS-P-F HPP sample was due to its high porosity properties [12].
Figure 6c,d presents the GCD curves of the OVS-P-TPA and OVS-P-F HPPs. The GCD
curves of the OVS-HPP samples revealed triangular-like shapes with a slight bend at
different current densities (0.5–20 A g−1), indicating the presence of pseudocapacitance
and EDLC characteristics [2,12,35,69].
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Figure 6. CV and GCD curves of (a,c) OVS-P-TPA HPP and (b,d) OVS-P-F HPP.

Figure 7a presents the capacitances of the OVS-HPPs determined using Equation (S1)
(from the GCD curves). The OVS-P-F HPP sample displayed excellent capacitance (292 F g–1)
among the tested OVS-P-TPA HPPs (72 F g–1) at 0.5 A g–1. This behavior could be explained
in terms of its higher surface area (375 m2 g−1), and the existence of phenyl rings with
abundant electrons, which make electrolytes more easily accessible to the surface of the
electrode [2,12,35,69]. In addition, the capacitances of the OVS-HPP-based samples reduced
as the current density increased from 0.5 to 20 A g−1 due to inadequate available time for
ion diffusion and adsorption inside the tiniest pores inside a big particle at high current
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densities [3,12,69]. Additionally, compared to the other porous materials, the OVS-P-F
HPP-based material showed good capacitance (Table S2) [12,35,69–71]. GCD measurements
were used to examine the stability of the OVS-HPP samples after 2000 cycles at 10 A g−1

(Figure 7b). The OVS-P-TPA and OVS-P-F HPP samples displayed good cycling stability
(Figure 7b), with 98.1 and 99.8% retention, respectively. The Ragone plot (Figure 7c) showed
that the energy densities of the OVS-P-TPA and OVS-P-F HPP samples were 10.02 and
40.5 Wh Kg−1, respectively.
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3.3. Photocatalytic Performance of OVS-P-TPA HPP and OVS-P-F HPP for H2 Production

The ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) was used to
investigate the light absorption properties of the polymers, as shown in Figure 8a. The two
polymers demonstrated good absorption in the visible light region, indicating their ability
to harvest large amounts of visible light during the photocatalytic reaction. The onset
of the absorption spectrum of the two polymers approximately reached 600 and 650 nm
for OVS-P-F HPP and OVS-P-TPA HPP, respectively. The bandgap (Eg) of the polymers
was determined from the Tauc plot of (αhν)2 versus (hν) from the UV-Vis spectra and by
extrapolation of the linear part of the curve to the energy axis in order to obtain the optical
bandgap based on the equation: αhν = A(hν − Eg)γ, where α is the absorption coefficient,
A is an energy-independent constant, Eg is the optical band gap, h is the plank constant, v
is the velocity, and γ is the electronic transition. As shown in Figure 8b, the Eg values of
the OVS-P-F HPP and OVS-P-TPA HPP polymers were calculated to be 2.26 and 2.16 eV,
respectively. Next, we tested the polymers as photocatalysts for light-driven hydrogen
evolution. In the presence of AA as a sacrificial reagent and without a Pt co-catalyst, we
recorded the hydrogen evolution kinetic curve to explore the H2 evolution efficiency of the
polymer photocatalyst, as shown in Figure 8c. The hydrogen evolution rate (HER) was
obtained from the kinetic curves (Figure 8d). The total amount of H2 produced by the
OVS-P-TPA HPP and OVS-P-F HPP polymer photocatalysts reached 2000 and 185 µmol/g
after 4 h of the reaction, respectively (Figure 8c). The HER was calculated for the two
polymers from the kinetic curve presented in Figure 8d. The OVS-P-TPA HPP sample
shows a promising HER value of 701.9 µmol g−1 h−1, which is more than 12 times higher
than that of OVS-P-F HPP (56.6 µmol g−1 h−1). The high HER value of OVS-P-TPA HPP
is due to the donor–acceptor structure between the pyrene and triphenylamine moieties
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of the OVS-P-TPA HPP polymer, leading to separation of the charge carrier and then the
enhancement of photocatalytic activity.
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Figure 8. (a) UV-Vis DRS absorption spectra of the OVS-HPPs, (b) the Tauc plot of (αhν)2 versus
(hν) from the UV-Vis spectra for calculating the bandgap of the OVS-HPPs, (c) time course of the
produced H2, and (d) HER of the two polymers. Conditions: ascorbic acid (AA, 0.1 M) and a xenon
lamp light source (AM1.5, λ > 380 nm, and 1000 W m−2).

To determine how the donor and acceptor fragments influenced the photoelectric
properties of the examined compounds, we calculated the charge density of the high
occupied molecular orbital (HOMO) and low unoccupied molecular orbital (LUMO) energy
levels using the density functional theory (DFT) of the DMol3 code. Figure 9 shows that
highly pronounced spatial separation of the HOMOs and LUMOs can be observed for
OVS-P-TPA HPP in contrast to OVS-P-F HPP. The LUMO orbital in the OVS-P-TPA HPP
sample was mainly localized over the pyrene donor, whereas the HOMO orbital was
localized over the triphenyl acceptor. On the other hand, in the case of the OVS-P-F HPP
polymer, the HOMO and LUMO orbitals were localized over the pyrene moiety, and no
charge separation was observed. Thus, we expect that OVS-P-TPA HPP has a better ability
to separate the photogenerated e−/h+ pairs and higher photocatalytic efficiency than other
molecules. This distribution indicates high electron delocalization, and significant charge
transfer (CT) occurs inside the investigated molecule under light irradiation.
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Figure 9. Optimized geometries, the density of HOMO, and the density of LUMO frontier molecular
orbitals of the OVS-HPPs.

4. Conclusions

In this study, we successfully constructed and designed OVSP-TPA HPP and POSS-P-F
HPP using simple Heck coupling under moderate and suitable reaction conditions through
the reaction of an OVS inorganic cage with brominated P/TPA or P/F as comonomers. All
spectroscopic results revealed the successful syntheses of both OVS-HPPs with good yield.
The POSS-P-F HPP sample had a Td10 of 444 ◦C, with a char yield of 79 wt%, as well as
a high specific surface area of 375 m2 g–1 and a pore volume of 0.69 cm3 g–1. According
to electrochemical three-electrode performance, the POSS-P-TPA and POSS-P-F HPPs
precursor capacitances were 72 and 292 F g−1, respectively. Furthermore, the OVS-P-TPA
HPP had a promising HER value of 701.9 µmol g−1 h−1 due to the donor–acceptor structure
that was obtained between the P and TPA moieties of the OVS-P-TPA HPP.
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