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A B S T R A C T   

In this research we developed two triphenylamine (TPA)-linked conjugated microporous polymers (CMPs), TPA- 
TAB and TPA-TBN, through Suzuki couplings of tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl) 
amine (TPA-BO) with the aryl bromides tetrakis(4-bromophenyl)benzidine (TAB-Br4) and 2,7,10,15-tetrabromo-
tetrabenzonaphthalene (TBN-Br4), respectively. These CMPs, which have substantial surface surfaces and 
outstanding thermal stability, could be employed as electrode materials in supercapacitor (SC) devices. In a 
three-electrode SC, the TPA-TAB CMP exhibited ultrahigh specific capacitance (684 F g− 1 at 0.5 A g− 1) and long- 
term stability, with a capacitance retention of 99.5% after 5000 cycles (at 10 A g− 1). Moreover, a two-electrode 
symmetric SC incorporating TPA-TAB CMP presented a capacitance of 117 F g− 1 and a high retention of 98% 
when subjected to 5000 cycles at 10 A g− 1. This exceptional performance resulted from was achieved through the 
use of redox-active TPA units and a large BET surface area (490 m2 g− 1). Accordingly, such TPA-CMPs appear to 
have promise for use in charge and energy storage applications.   

1. Introduction 

Using energy without damaging the environment will be an impor-
tant issue in the future to maintain the health of all living creatures; 
accordingly, limiting the burning of fossil fuels and decreasing the 
emissions of carbon are necessary goals [1–4]. Indeed, much research 
has been conducted into the development of novel concepts for energy 
storage, rectification, and transport. Among the possible electrical en-
ergy storage devices, electrochemical capacitors and batteries appear to 
be particularly important systems for producing clean energy, due to 
their ability to transform chemical energy into electrical energy [5,6]. 
Supercapacitors (SCs) appear to be a sustainable alternative technology 

to batteries, fuel cells, and classical capacitors; they are attractive 
because of their long cycle life, high reliability, remarkable cycling 
stability, minimum environmental effect, low maintenance costs, pulsed 
power density, and fast charge/discharge rates [7–11]. Two main pro-
cesses dominate the storage of energy in SCs: in electrical double-layer 
capacitors (EDLCs), by reversible ion adsorption through the interface 
of the electrode (e.g., porous carbon); in pseudocapacitors, by faradaic 
reactions that occur between the electrolyte and other organic moieties 
(e.g., conjugated polymers) or metal oxides [12–17]. Several recent 
reviews have highlighted the characteristics required for an effective SC 
electrode material: (i) interconnecting networks, to promote ion diffu-
sion between particles; (ii) a conductive network, for ion percolation 
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within the particles; (iii) uniform narrow micropores and a large surface 
area, to facilitate ion accumulation; and (iv) thickness and wettability, 
to improving the accessibility of effective sites [18–24]. 

Triphenylamine (TPA) derivatives are good electrode materials that 
can be processed into SC devices because of their high charge mobilities, 
excellent thermal stabilities, unique electronic properties, and high 
redox activity. Furthermore, the presence of TPA moieties as repeating 
radical units in, for example, polytriphenylamines (PTPAs) allows 
reversible radical redox reactions to occur through charge/discharge 
processes [25–27]. The chemical structures of the conjugated polymers 
are responsible for pseudocapacitive energy storage, while the micro-
structure and porosity of electrodes both contribute to a fast scan rate 
and EDLC behavior. Thus, a single conjugated polymer can be used to 
realize both types of energy storage; as such, they can be low-cost al-
ternatives to the rare and expensive materials often employed in con-
ventional SC devices [28]. 

Conjugated microporous polymers (CMPs) have been applied widely 
in the fields of catalysis, sensing, gas storage, and energy conversion, as 
well as in several energy storage applications [29–46]. CMPs are formed 
through covalent linkage of π-conjugated rigid subunits containing 
additional functionality, typically producing three-dimensional (3D) 
networks having micropores with diameters of less than 2 nm as well as 
high surface areas. These porous structures provide many opportunities 
for electron and ion transmission, a distinguishing feature that separates 
CMPs from other linear polymers. CMPs have frequently been con-
structed using common C–C coupling (Sonogashira, Yamamoto, and 
Suzuki) and oxidative polymerization strategies [47–50]. These 
coupling reactions often provide high degrees of polymerization and 
crosslinking and enable the introduction of a wide range of organic 
moieties. Accordingly, CMPs have become useful materials as electrodes 
in energy storage devices, with performance approaching that of other 
standard electrode materials [51,52]. For example, triazatruxene-based 
CMPs have exhibited capacitances between 141 and 183 F g− 1 [53]; a 
poly(aminoanthraquinone) CMP provided a three-electrode capacitance 
of 576 F g− 1 [54]; and thianthrene-based POPs have a capacitance of 
217 F g− 1 [55]. The quest remains, however, to develop less expensive 
and more effective conjugated microporous materials for use as elec-
trodes in SC applications. Toward this goal, in this study, we employed 
simple Suzuki coupling between a TPA derivative (TPA-BO) and two 
aryl bromides (TAB-Br4 and TBN-Br4) to afford TPA-CMP networks (the 
TPA-TAB and TPA-TBN CMPs, respectively) that function as 
high-performance electrode materials for SCs. 

2. Experimental 

2.1. Materials 

Sodium hydrogen carbonate (NaHCO3), potassium acetate (KOAc), 
triphenylamine (TPA), N-bromosuccinimide (NBS), Pd(dppf)Cl2, Pd 
(PPh3)4, magnesium sulfate anhydrous (MgSO4) and tri-
fluoromethanesulfonic acid (CF3SO3H) were purchased from Sigma- 
Aldrich. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), methane 
sulfonic acid (CH3SO3H), bis(pinacolato)diboron (B2pin2), dime-
thylformamide (DMF) and potassium carbonate (K2CO3), were ordered 
from Alfa Aesar. 1,4-dioxane was bought from Acros. The synthesis of 
tris(4-bromophenyl)amine (TPA-Br3) was described in detail in the 
supporting information with their spectroscopic analyses [Scheme S1, 
Figs. S1–S3] [55]. 

2.2. Synthesis of monomers 

2.2.1. Synthesis of Tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) 
phenyl)amine (TPA-BO) 

A mixture of TPA-Br3 (3.0 mmol), B2pin2 (11 mmol), CH3COOK (52 
mmol), and Pd(dppf)Cl2 (0.51 mmol) was heated in 1,4-dioxane at 80 ◦C 
for two days. After cooling, DI water was added and extracted with 

CH2Cl2. The combined extracts were dried (MgSO4), filtered, and 
concentrated. A yellow solid was obtained after purification through 
chromatography with EtOAc/hexane (1:2) (Scheme S2). FTIR (Fig. S4): 
2981, 1585, 1359, 1309, 1142 cm− 1. 1H NMR (Fig. S5): 7.76, 7.05, 1.37 
(s, 36H, CH3) ppm. 13C NMR (Fig. S6): 151, 136, 124, 123, 84, 23 ppm. 

2.2.2. Synthesis of 4-bromo-N-(4-bromophenyl)-N-phenylaniline (TPA- 
Br2) 

A solution of TPA (5.00 g, 20.0 mmol) and NBS (7.23 g, 41.57 mmol) 
in DMF (70 mL) was kept stirring overnight. The mixture was extracted 
with H2O and CH2Cl2. The organic layer was dried over MgSO4. The 
resulting viscous oil was purified through column chromatography with 
hexane to give TPA-Br2 (43%, Scheme S3). 1H NMR [Fig. S7(a)]: 
7.35–7.34 (4H), 7.28–7.26 (2H), 7.07–7.06 (3H), 6.94–6.93 (4H). 13C 
NMR [Fig. S7(b)]: 115.39, 123.70, 124.56, 125.58, 129.50, 132.30, 
146.49, 147.33. 

2.2.3. Synthesis of tetrakis(4-bromophenyl)benzidine (TAB-Br4) 
Solution of methanesulfonic acid (CH3SO3H, 2 mL) and TPA-Br2 

(0.77 mmol) in dry CH2Cl2 (25 mL) at 0 ◦C was stirred for 1 h. DDQ 
(1.16 mmol) was added carefully to the mixture, which was then stirred 
for 12 h. Then, saturated NaHCO3 (45 mL) was added, and the reaction 
was extracted with CH2Cl2. The residue was recrystallized by acetoni-
trile to give a white solid (41%, Scheme S3). FTIR (Fig. S8): 3031 
(Ar–H), 1600 (C––C), 1276 (C–N), 717 (C–Br) cm− 1. 1H NMR [Fig. S9 
(a)]: 7.45–7.43 (2H), 7.37–7.35 (4H), 7.11–7.09 (2H), 6.99–6.97 (4H). 
13C NMR [Fig. S9(b)]: 146.34, 145.96, 135.45, 132.40, 127.65, 125.57, 
124.53, 115.66. 

2.2.4. Synthesis of 2,7,10,15-tetrabromotetrabenzonaphthalene (TBN-Br4) 
TPE-Br4 (3.00 g, 4.6 mmol), 2,3-dichloro-5,6-dicyano-1,4-benzoqui-

none (2.50 g, 11 mmol) were put to dry DCM (235 mL) and then was 
allowed for cooling into ice around 1 h. Next, CF3SO3H (2.75 mL) was 
slowly added and kept stirring for 2 h at 0 ◦C. After that, the reaction was 
stirred at ambient temperature for 5 h. Then, methanol (55 mL) was 
poured into the flask and the reaction solution was stirred genteelly at 
ambient temperature overnight. The solid afforded was filtered off and 
washed exhaustively with different solvents (THF, methanol, and 
acetone) to give pale brown solid (1.87 g, 63%, Scheme S4). FT-IR (KBr, 
cm− 1, Fig. S10): 3079 (C–H aromatic), 566 (C–Br stretching). 1H NMR 
(500 MHz, CDCl3, δ, ppm, Fig. S11): 8.75 (d, 4H), 8.41 (d, 4H), 7.75 (dd, 
4H). 

2.2.5. Synthesis of TPA-CMPs 
TBA-Br4 (0.10 g, 0.12 mmol), TPA-BO (0.10 g, 0.16 mmol), K2CO3 

(0.13 g, 0.95 mmol), and Pd catalyst (0.040 g, 0.030 mmol) in DMF (10 
mL) and DI water (3 mL) was deoxygenated with N2 gas for 30 min and 
the heated at 110 ◦C for 72 h. The resulting precipitated solid was 
washed with THF. The TPA-TAB CMP (78%) was obtained as a powder 
after drying at 70 ◦C. A similar procedure was applied to obtain the TPA- 
TBN CMP (81%), with TBN-Br4 (0.10 g, 0.15 mmol) used instead of TBA- 
Br4 (Scheme 1). Elemental analysis for TPA-TAB CMP: C, 88.55%; N, 
5.36%. Elemental analysis for TPA-TBN CMP: C, 93.37%; N, 1.04%. 

3. Results and discussion 

3.1. Synthesis and structural investigation of the TPA-TAB and TPA-TBN 
CMPs 

We used Suzuki coupling of the TPA-BO monomer with TAB-Br4 and 
TBN-Br4 to afford the TPA-TAB and TPA-TBN CMPs as insoluble solids, 
of green and gray appearance, respectively, in yields of 78 and 81%, 
respectively (Scheme 1). We employed Fourier transform infrared 
(FTIR) and solid-state 13C NMR spectroscopy to characterize the struc-
tures of these TPA-CMPs. Bands representing the B–O bonds of TAP-BO 
(at 1309 cm− 1) and the C–Br bonds of the aryl bromide monomers (TBA- 
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Br4 and TBN-Br4; at 566 cm− 1) were absent in the FTIR spectra of the 
two TPA-CMPs [Fig. 1(a)]. Distinct bands were, however, present for 
their aromatic C––C and C–H bonds (ca. 1602, 1492, and 3031 cm− 1) 
and C–N bonds (ca. 1272 cm− 1). The solid-state 13C NMR spectra of 
these two TPA-CMPs featured characteristic signals near 146 ppm and in 
the range 136.5–114.0 ppm, originating from the C–N and aryl units, 
respectively [Fig. 1(b)]. 

We employed thermogravimetric analysis (TGA) of the two TPA- 
CMPs, applying a heating rate of 20 ◦C min− 1 under a N2 environ-
ment. The TGA traces of the TPA-TAB and TPA-TBN CMPs revealed 

[Fig. 2(a)] high values of Td5 (ca. 335 and 404 ◦C, respectively) and Td10 
(ca. 486 and 500 ◦C, respectively), with carbon residue of 74 and 70 wt 
%, respectively, after heating up to 800 ◦C (Table 1). As expected for 
microporous polymers, the two TPA-CMPs had amorphous appearances, 
with only a broad peak near 21◦ featuring in their powder X-ray 
diffraction patterns [Fig. 2(b)]. Moreover, N2 adsorption/desorption 
studies at 77 K, performed after heating these TPA-CMPs at 150 ◦C to 
remove any residual solvent or moisture, demonstrated their micropo-
rosities. The TPA-TAB CMP provided a type IV isotherm and had a 
Brunauer–Emmet–Teller (BET) surface area of 490 m2 g− 1, while the 

Scheme 1. Synthesis of the (a) TPA-TBA and (b) TPA-TBN CMPs.  

Fig. 1. (a) FTIR and (b) solid-state spectra of the TPA-TBA and TPA-TBN CMPs.  
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TPA-TBN CMP displayed a type III isotherm with a BET surface area of 
100 m2 g− 1 [Fig. 2(c) and (d)]. Furthermore, we fitted the N2 sorption 
isotherms by applying nonlocal density functional theory to simulate the 
pore size distributions (PSDs) of our two TPA-CMPs. The PSD curves of 
the TPA-TAB and TPA-TBN CMPs reflected the presence of micropores, 
as well as some mesopores, with diameters of 0.45–3.98 and 0.41–2.21 
nm, respectively [Fig. 2(c) and (d); Table 1]. 

We used scanning electron microscopy (SEM) and transmission 
electron microscopy (TEM) to examine the morphologies of our CMPs. 
The SEM images of the TPA-TAB and TPA-TBN CMPs revealed 

interconnected aggregates of nanoparticles within their porous net-
works [Fig. 3(c) and (d)]. Also, TEM images of the two materials dis-
played sphere shapes [Fig. 3(a) and (b), and S12]. Elemental mapping, 
performed using energy dispersive spectroscopy (EDS), revealed the 
presence of C and N atoms throughout the TPA-CMP materials (Fig. 3, 
S13, and S14). 

3.2. Electrochemical performance of the TPA-TAB and TPA-TBN CMPs 

To analyze our prepared CMPs’ electrochemical performance and 
assess their suitability as energy storage electrode materials, we per-
formed cyclic voltammetry (CV) and galvanostatic (GCD) measure-
ments, within the potential range from 0 to − 1.0 V. Fig. 4(a) and 4(b) 
displays the CV traces of the TPA-TAB and TPA-TBN CMPs recorded at 
various scan rates in the range 5–200 mV s− 1. A characteristic humped- 
rectangular form appeared in both cases and remained steady during 
scan sweeping, demonstrating that our TPA-CMPs were stable in these 
circumstances and that their capacitance arose from EDLC behavior [56, 
57]. 

The CV traces also revealed that these materials had high-rate ca-
pabilities and underwent their redox processes with simple kinetics. The 
presence of the redox-active TPA moieties, containing electroactive N 
atoms attached to three phenyl rings, in the skeletons of the two TPA- 
CMPs afforded them the ability to exhibit reversible radical redox ac-
tivity throughout the charge and discharge cycles. We also examined the 
GCD profiles and capacitances of these materials at current densities 
ranging from 0.5 to 5 A g− 1 [Fig. 4(c) and (d)]. All of the GCD curves had 

Fig. 2. (a) TGA, (b) XRD, (c) N2 sorption isotherms, and (d) PSD profiles of the TPA-TBA and TPA-TBN CMPs.  

Table 1 
Presented BET and TGA data of the two TPA-CMPs.  

Sample Td5 

(◦C) 
Td10 

(◦C) 
Char yield 
(wt%) 

Surface area 
(m2 g− 1) 

Pore size 
(nm) 

TPA-TAB 
CMP 

335 486 74 490 0.45–3.98 

TPA-TBN 
CMP 

404 500 70 100 0.41–2.21  

Table 2 
Parameters determined from the fitted Nyquist plots of the TPA-CMPs.  

Sample Rs (Ω) Rct (Ω) CPE–EDL (S.sn) CPE–P (S.sn) 

TPA-TAB CMP 31 252 0.0000933 0.0001870 
TPA-TBN CMP 35 120 0.0027075 0.0001974  
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a bent-triangular form, indicating pseudocapacitive and EDLC proper-
ties. When comparing the charging and discharging periods for both 
materials, the discharge times were longer than the charging times, 
suggesting enhanced capacitance. Fig. 5(a) displays the measured spe-
cific capacitances. When TPA-CMPs samples measured at current den-
sities of 0.5, 1, 2, 3, and 5 A g− 1, the TPA-TAB CMP delivered specific 
capacitances of 684, 311, 138, 59, and 26 F g− 1, respectively; for the 
TPA-TBN CMP, these values were 531, 310, 72, 42, and 31 F g− 1, 
respectively. Thus, the highest capacitance of the TPA-TAB CMP (684 F 

g− 1) was greater than that of the TPA-TBN CMP (531 F g− 1). We attri-
bute this superior performance to the larger surface area (490 m2 g− 1) 
and extra N heteroatom of the TPA-TAB CMP, both of which would 
accelerate the movement of electrolyte ions to the electrode surface to 
achieve the redox process. To examine the stability of these CMPs, we 
investigated their cycle stability over 5000 cycles at 10 A g− 1 [Fig. 5(b)]. 
Here, the TPA-TAB and TPA-TBN CMPs exhibited outstanding capacity 
retentions of 99.5 and 96%, respectively. Such long-term stability sug-
gested that these CMPs might be suitable for real electrochemical energy 

Fig. 3. (a, b) TEM and (c, d) SEM images of the (a, c) TPA-TAB and (b, d) TPA-TBN CMPs, and their EDS mapping images.  

Fig. 4. (a, b) CV traces and (c, d) GCD curves of the (a, c) TPA-TAB and (b, d) TPA-TBN CMPs.  
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storage applications. In addition, the TPA-TAB and TPA-TBN CMPs 
delivered energy densities of 95 and 74 W h kg− 1, respectively [Fig. 5 
(c)]. Notably, our TPA-CMPs exhibited ultrahigh performance (capaci-
tance and stability) when compared with other previously reported 
CMPs in three-electrode SCs (Table S1). 

Fig. 6(a) presents the Nyquist plots of our CMPs, determined using 
electrochemical impedance spectroscopy (EIS), with a fitted equivalent 
electric circuit containing a series resistance (Rs), charge transfer resis-
tance (Rct), constant phase elements representing EDLC (CPE–EDL) and 
pseudocapacitive (CPE–P) behavior, and a Warburg element (Zw), as 
displayed in Fig. 6(b). The plot of the TPA-TAB CMP cell featured a 

shorter straight line than that of the TPA-TBN CMP cell; furthermore, the 
line for the TPA-TAB CMP cell was leaning toward the vertical Z’’ axis, 
indicating that it had a high capacitive performance. The Warburg 
length/resistance of the TPA-TBN CMP was higher than that of the TPA- 
TAB CMP, as evidenced by the straight line deviating from the vertical 
axis. The TPA-TAB and TPA-TBN CMPs had ohmic resistances of 31 and 
35 Ω [Table 2], respectively, and charge transfer resistances of 252 and 
120 Ω [Table 2], respectively. Fig. 6(c) displays their frequency- 
dependent magnitude Bode plots. At low frequencies, we observed 
slanted lines with a negative slope, while at high frequencies, less 
resistance was observed, validating the remarkable capacitive 

Fig. 5. (a) Specific capacitances, (b) long-term cycling stability profiles, and (c) Ragone plots of the TPA-TAB and TPA-TBN CMPs.  

Fig. 6. (a) Nyquist plots, (b) fitted circuit, (c) Bode plots of frequency with respect to magnitude of resistance, and (d) Bode plots of the frequency with respect to 
phase angle (to determine knee frequencies) for the TPA-TAB and TPA-TBN CMPs. 
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characteristics of these electrode materials. Fig. 6(d) provides plots of 
the frequency-dependent phase angles for these CMP electrodes. The 
knee frequencies were determined at a phase angle of − 45◦, at which 
point the electrode’s resistive and capacitive characteristics were equal. 
The knee frequency is a well-established indication of a compound’s rate 
capacity [61]. The TPA-TAB and TPA-TBN CMPs had knee frequencies 
of 205.35 and 58.84 Hz, respectively. 

For a deeper study of the possible practical application of our TPA- 
CMPs as SC electrodes, we evaluated the electrochemical functionality 
of symmetric SC devices in the form of CR2032 coin cells. Here, our 
CMPs served as both the cathode and anode within symmetric super-
capacitors (SSCs). We recorded CV profiles at various scan speeds [Fig. 7 
(a) and 7(b)] and GCD curves at various current densities [Fig. 7(c) and 
7(d)]. The cyclic voltammograms of both materials possessed almost- 
rectangular shapes, the sign of a SC. Because higher scan rates pro-
duced larger current densities, demonstrating improved kinetics and 
rate capacities, we inferred that the electrode integrity was maintained 
even at higher scan rates. The GCD curves of the TPA-TAB and TPA-TBN 
CMPs were of approximately triangular form, with minimal bending 
occurring during charging, suggesting a combination of pseudocapaci-
tive and EDLC behavior. 

In addition, the discharging time was longer than the charging time, 
implying that both CMPs might be suitable for real-world use. The 
discharge time for the TPA-TAB CMP was almost twice that of the TPA- 
TBN CMP, suggesting that the capacity of the former would be more 
than twice that of the latter; this behavior was confirmed from the ca-
pacity graph displayed in Fig. 8(a). Furthermore, when operated at 
current densities of 0.5, 1, 2, 3, and 5 A g− 1, the coin cell incorporating 
the TPA-TAB CMP displayed specific capacitances of 117, 167, 86, 60, 
and 37 F g− 1, respectively; for the TPA-TBN CMP, these values were 100, 
79, 36, 28, and 25 F g− 1, respectively. When we performed cycle sta-
bility tests for the TPA-CMPs over 5000 cycles at 10 A g− 1 [Fig. 8(b)], the 
TPA-TAB and TPA-TBN CMPs provided capacity retentions of 98 and 
93%, respectively, confirming their long-term stabilities. In addition, the 
TPA-TAB and TPA-TBN CMPs achieved energy densities of 17 and 13 W 

h kg− 1, at a power density of 125 W kg− 1, respectively, as determined 
from the Ragone plot diagram in Fig. 8(c). 

These values are among the highest ever reported for SSC devices 
(Fig. 9); for example, PANI/NCNT composite [58], MCSF porous mate-
rial [59], and IHPNC- carbon nanotubes [60] offered an energy density 
of 11.1, 9.6 and 8.7 Wh kg− 1 at 980, 108.5 and 195 W kg− 1, respectively. 
N-PCNFs/PSN presented an energy density of 8.5 Wh kg− 1 for a power 
density = 250 W kg− 1 [61]; N-CNFs/900 displayed an energy density of 
7.11 Wh kg− 1 at 125 W kg− 1 [62]; and FC-CMPs/rGO delivered a power 
density of 8 Wh kg− 1 at 124 W kg− 1 [63]. Furthermore, we demon-
strated the practical application of our TPA-CMPs as symmetric cells 
through their use in the illumination of a light-emitting diode (LED; 
Fig. S15). 

4. Conclusion 

We have prepared two TPA-based CMPs through single-step Suzuki 
couplings. These TPA-TAB and TPA-TBN CMPs possessed exceptional 
thermal stabilities (Td10 ˃ 400 ◦C), large surface areas, and outstanding 
performance for energy storage, arising from their chemical structures 
featuring redox-active TPA units. In particular, the TPA-TAB CMP 
exhibited three-electrode capacitance of 684 F g− 1 and long-term sta-
bility (99.5%) after 5000 cycles. Moreover, it demonstrated a two- 
electrode SSC capacitance of 117 F g− 1 and high-capacity retention of 
98% after 5000 cycles. Thus, these TPA-CMPs appear to be attractive 
electroactive materials for application as active electrodes in electro-
chemical energy storage devices. 
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