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A B S T R A C T

Background: Conjugated microporous polymers CMPs have unique position among porous materials thus
they are studied widely. Realistically, triphenylamine (TPA) derivatives generally possess high aromaticity,
redox capabilities, high charge motilities, and outstanding electronic features, therefore designing CMPs
based on TPA derivatives could result in fantastic properties.
Methods: We performed one-pot coupling and polycondensation of a boronated triphenylamine derivative
(TPA-3Bor) with bromobenzene (Bz-4Br) and bromopyrene (Py-4Br) derivatives to obtain two new TPA-
based conjugated microporous polymers (TPA-Bz and TPA-Py CMPs, respectively). The successful synthesis
of two TPA CMPs and their features were examined via Fourier transform infrared (FTIR) and 13C solid state
NMR spectroscopies.
Significant Findings: These two CMPs displayed attractive adsorptive properties toward the small dye mole-
cule rhodamine B (RhB) from an aqueous solution. Outstanding adsorption performance, rapid kinetics, and
good reusability suggest that our CMPs could function as effective adsorbents for RhB and, perhaps, other
pollutants from wastewater. Moreover, our TPA-based CMPs displayed effective and stable performance
when introduced as electrodes for supercapacitors, with capacitances as high as 78 F g�1 at a current density
of 1 A g�1 as well as high stability. This study emphasizes the importance of conjugation and planarity in the
future design of such materials.
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Introduction

Conjugated microporous polymers (CMPs), first prepared by
Andrew Cooper [1], are unique among porous materials because of
their p-conjugated frameworks, three-dimensional (3D) lattices, and
permanently microporous structures [2�9]. Despite similarities in
the syntheses through coupling of porous aromatic frameworks and
CMPs, the former possess tetrahedral tetraphenylmethane nodes
and, therefore, do not feature extended p-conjugated systems
[10�13]. To some extent, covalent triazine frameworks contain the
same microporous features as those in CMPs, but they are prepared
using different chemistry [2, 14]. CMPs can be created from two or
more monomers or through homocoupling of singular monomers
[15�18]; the customization of CMPs is almost boundless, with great
scope for tuning their pore structures, morphologies, and optoelec-
tronic behavior through tuning of the topologies of their monomers
or through doping with various heteroatoms or metals [5, 19-21].
Many reactive coupling partners (e.g., halogens, boronic acids,
alkenes, alkynes, amines, nitriles, and substituted aromatic mono-
mers) [22�27] have been applied in the synthesis of CMPs.

The most prevalent routes toward CMPs have involved Sonoga-
shira�Hagihara coupling, Suzuki�Miyaura coupling, Heck coupling,
Yamamoto coupling, phenazine ring fusion, cyclotrimerization, and
Schiff-base condensation [28�32]. Various features have been eluci-
dated to favor CMPs having extended conjugated structures, high
porosities, tunable chemistry, and outstanding thermal and chemical
robustness [33�37]. Nevertheless, the quest remains to develop new
CMPs possessing unique porosities, elegant geometries, and higher
thermal resistance. With their attractive features, CMPs have found
many applications in, for example, storing and separating gasses,
chemical encapsulation, photocatalysis, heterogeneous catalysis, light
emitting diodes, sensors, and energy storage and conversion [38, 39].

Water scarcity crisis is a global challenge thus increasing the
availability of potable water through water purification techniques
could contribute well to solve this problem, thus new materials have
been designed for water purification [40�48]. Organic dyes are
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common organic water contaminants arising from industrial, phar-
maceutical, and biological activities [49, 50]. Because they can have
harmful effects on the health of living organisms [51], ecosystems
[49], and the general public, the majority of commercial dyestuffs are
categorized as very toxic agents, deleterious to aval organisms, carci-
nogenic, and non-biodegradable, making their removal from waste-
water a high priority. Although various strategies (e.g., ion exchange
and photocatalysis) have been introduced to eliminate such hazard-
ous materials [52�55], their adsorption from wastewater is most
common because of cost-effectiveness and eco-friendliness [56]. Var-
ious families of porous materials—including natural fibers, ordered
mesoporous carbons (OMCs), zeolites, and metal organic frameworks
(MOFs) [46, 57-59] have been examined as dye adsorbents. Relatively
poor removal performance, adsorption efficacy, and recyclability
have minimized the efficacy of zeolites and natural fibers as dye
adsorbents [60]. Furthermore, MOFs generally possess low stabilities,
due to their weak coordinative metal�organic bonds, and OMCs have
the drawback of requiring high-temperature thermal treatment dur-
ing their synthesis [61, 62]. Consequently, there remains a challenge
to develop new adsorbents capable of the efficient adsorption and
disposal of dyestuffs with rapid kinetics.

Because triphenylamine (TPA) derivatives generally possess high
aromaticity, redox capabilities, high charge mobilities, and outstand-
ing electronic features, designing CMPs based on TPA derivatives
could result in high adsorptivities [63, 64]. In addition, TPA deriva-
tives have also been applied as electrode substrates for storing energy
in various types of supercapacitors, the result of their attractive
charge transport features, morphologies, thermal stabilities, and
excellent electroluminescence properties [65, 66]. Furthermore,
reversible radical redox processes have been observed during
charging and discharging processes when applying polymeric TPA
moieties [67]. Thus, we suspected that new electrochemically sta-
ble and conducting porous polymers, with tunable pore sizes and
high surface areas, could be derived from new TPA derivatives
to streamline the diffusion rates of solvents and electrolyte
molecules.

In this study, we prepared two TPA-based CMPs -TPA-Bz CMP and
TPA-Py CMP- in one step through classical Suzuki coupling between
tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amine
(TPA-3Bor) with 1,2,4,5-tetrabromobenzene (Bz-4Br) and 1,3,6,8-tet-
rabromopyrene (Py-4Br), respectively (Scheme 1). Both of TPA CMPs
featured high surface areas up to 1470 m2 g � 1, relative thermal
stabilities with a char yield reached 87% after heating to 800 °C,
and chemical resistance. Adsorption efficiencies of TPA CMPs for
Scheme 1. Synthesis and 3D structures of the two new CMPs based on TPA units
(Reaction proceeded in DMF media, at 130 °C and under N2 pressure).
the small dye molecule rhodamine B (RhB) from water were
recorded (up to 1633 mg g�1) which they are higher than those
of other recently reported adsorbents. Moreover, when examined
as supercapacitors and displayed a capacitance up to 78 F g � 1 at
current density 1 A g � 1. These new TPA CMPs provided efficien-
cies higher than those of other recently reported TPA derivatives
and porous materials.

Experimental section

Materials

Solvents and other chemicals were purchased from commercial
sources and applied without further purification. Bromine, pyrene,
triphenylamine, and bis(pinacolato)diboron were purchased from
Alfa Aesar. Tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4], N-
bromosuccinimide (NBS), 1,2,4,5-tetrabromobenzene (Bz-4Br), and
potassium carbonate (K2CO3) were obtained from Sigma�Aldrich.
The syntheses of TPA-3Bor and Py-4Br are presented in Schemes
S1�S3. Water was distilled twice prior to use.

TPA-Bz CMP

As presented in Scheme S4, a 30-mL Schlenk tube was charged
with TPA-3Bor (200 mg, 0.321 mmol), Bz-4Br (94.8 mg, 0.240 mmol),
K2CO3 (333 mg, 2.40 mmol), and Pd(PPh3)4 (50.0 mg, 0.0430 mmol)
and then evacuated for 15 min. N,N-Dimethylformamide (DMF,
10 mL) and water (1.34 mL) were added as co-solvents. The tube was
subjected to three freeze/thaw cycles (10 min per each cycle), then
closed and heated at 130 °C with magnetic stirring for 72 h. The solid
was filtered off and washed (three times each) with water, MeOH,
and tetrahydrofuran (THF). The gray powder was dried at 100 °C for
24 h.

TPA-Py CMP

As presented in Scheme S5, the reaction of TPA-3Bor (200 mg,
0.321 mmol), Py-4Br (125 mg, 0.241 mmol), K2CO3 (333 mg,
2.40 mmol), and Pd(PPh3)4 (50.0 mg, 0.0430 mmol) in DMF (10 mL)
and water (1.34 mL) was performed, using the procedure described
above, to give a green powder.

Results and discussion

Materials characterization

For this study, we selected three building blocks for their distinct
features: TPA, -a non-basic molecule relative to other amines- and its
derivatives, for its promising electrical conductivity [63]; pyrene (Py)
for its polycyclic aromatic structure and strong p-stacking ability;
and benzene (Bz) for its aromaticity, but lower degrees of conjugation
and planarity with respect to Py. We prepared TPA-Bz CMP and TPA-
Py CMP through Suzuki coupling of TPA-3Bor with Bz-4Br and Py-
4Br, respectively, in the presence of a Pd catalyst; their syntheses are
summarized in Scheme 1 and detailed in Schemes S4 and S5. Fourier
transform infrared (FTIR) and nuclear magnetic resonance (NMR)
spectroscopy confirmed the chemical structures of the synthesized
building blocks. We synthesized TPA-3Br as displayed in Scheme S1;
its FTIR spectrum featured characteristic absorption signals at 3064,
1570, 1266, and 816 cm�1 representing the stretching vibrations of
aromatic C�H, C�N, C = C, and C�Br bonds, respectively (Fig. S1). The
1H NMR spectrum of TPA-3Br (Fig. S4) confirmed its aromatic struc-
ture through the appearance of two singlets at 7.35 and 6.92 ppm;
furthermore, the signals of the nuclei of its aromatic carbon atoms
appeared in the 13C NMR spectrum (Fig. S5) as four bands in the range
146�116 ppm. TPA-3Br underwent boronation to yield TPA-3Bor



Fig. 1. (A) FTIR and (B) solid state 13C NMR spectra of (a) TPA-Bz and (b) TPA-Py CMPs.

Fig. 2. Thermogravimetric analysis (a) TPA-Bz and (b) TPA-Py CMPs under a nitrogen
media and a heating rate of 20 °C min�1.
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(Scheme S2). FTIR spectroscopy revealed the absorption bands for its
B�O and C�O bonds at 1517 and 1400 cm�1, respectively (Fig. S1).
1H NMR spectral analysis (Fig. S6) revealed a singlet at 1.34 ppm and
two doublets at 7.68 and 7.05 ppm, related to aliphatic and aromatic
protons, respectively. The 13C NMR spectrum featured signals for ali-
phatic and aromatic carbon nuclei at 24.94 and 150�84 ppm, respec-
tively (Fig. S7). The FTIR spectrum of Py-4Br featured characteristic
bands for the aromatic C�H, C = C, and C�Br bonds at 3078, 1587,
and 862 cm�1, respectively; its low solubility precluded the recording
of NMR spectra.

We used FTIR and solid state 13C NMR spectra to elucidate the
molecular frameworks of the TPA-Bz and TPA-Py CMPs Fig. 1.a
presents the FTIR spectra of our synthesized CMPs. The spectrum of
TPA-Bz CMP confirmed the presence of aromatic C�H, C�N, and C = C
bonds through the appearance of vibrational bands at 3037, 1613,
and 1594 cm�1, respectively. The same vibrational bonds appeared in
the spectrum of TPA-Py CMP at 3028, 1604, and 1585 cm�1, with
these small shifts arising from differences in their degrees of conjuga-
tion. The absence of vibrational bands for B�O and C�B bonds in Figs.
S2 and S3 confirmed the complete condensation of the monomers
and, thus, the successful syntheses of these CMPs. The solid state 13C
NMR spectra (Fig. 1b) revealed evidence for imino carbon nuclei
(C�N) and aromatic nuclei. The spectrum of TPA-Bz CMP featured a
C�N signal at 147.0 ppm and signals for aromatic carbon nuclei at
139.3 and 129.2 ppm. Similarly, the spectrum of TPA-Py CMP fea-
tured these signals at 147.9, 137.1, and 126.9 ppm.
Table 1
Porosity properties and thermal analysis of TPA-Bz, and TPA-P

CMP Char yield (wt%) Pore volume (g/cm3)

TPA-Bz CMP 53.1 0.68
TPA-Py CMP 83.7 2.11
Thermal gravimetric analysis (TGA) confirmed the high degrees of
polycondensation of our synthesized TPA-Bz and TPA-Py CMPs and
clarified their high thermal robustness. Briefly, Fig. 2 and Table 1
reveal that our CMPs were thermally stable at elevated temperatures
under a N2 atmosphere. The thermal resistance of TPA-Py CMP was
higher than that of TPA-Bz CMP. The decomposition temperature
(Td10) of TPA-Py CMP was 673 °C, with a char yield after heating at
800 °C of 83.7%; for TPA-Bz CMP, these values were 513 °C and 53.1%,
respectively. This chasm in the thermal stabilities of these CMPs
resulted from the higher degrees of planarity and rigidity of the subu-
nits in the TPA-Py CMP, relative to those in the TPA-Bz CMP, thereby
enhancing the strength of p-stacking in the former [15].

We analyzed the porosities of our TPA-Bz and TPA-Py CMPs in
terms of their isothermal N2 sorption analytics at 77 K. For both as-
synthesized CMPs, Fig. 3 reveals sharp N2 loadings at lower pressure,
characteristic of type I isotherms, indicative of microporous frame-
works. Using the Brunauer�Emmett�Teller (BET) model, we esti-
mated the surface areas and pore volumes of the as-synthesized
CMPs (Table 1). The surface area of TPA-Py CMP (1470 m2 g�1;
Fig. 3b) was higher than that of TPA-Bz CMP (773 m2 g�1, Fig. 3a),
consistent with the higher planarity and flatter structure of the Py
units, relative to the Bz units [68]. The TPA-Bz and TPA-Py CMPs pos-
sessed pore volumes of 0.681 and 2.11 cm�3 g�1, respectively. Fur-
thermore, we applied nonlocal density functional theory (NLDFT) to
investigate the distributions of the pore sizes within our CMPs; we
calculated (Figs. 3c and 3d and Table 1) a dual micropore size for
TPA-Bz CMP (1.3, 1.67 nm), but single-porosity features for TPA-Py
CMP (1.09 nm).

We employed field-emission scanning (SEM) and transmission
(TEM) electron microscopy to visualize the morphologies of the TPA-
Bz and TPA-Py CMPs Figs. 4.a and 3b present SEM images of the TPA-
Bz and TPA-Py CMPs, revealing that both possessed spherical shapes
without any aggregation. TEM images revealed spherical and smooth
structures for both as-synthesized TPA-Bz and TPA-Py CMPs (Figs. 4c
and 3d), as well as their loosely aggregated morphologies. Statistical
analysis of the TEM data revealed that the average diameter of the
particles of TPA-Bz CMP was approximately 83 nm, while that for the
y CMPs.

Pore size (nm) Surface area (m2/g) Td10% ( °C)

1.3, 1.67 773 516
1.09 1470 673



Fig. 3. (a, b) N2 sorption isotherms and (c, d) pore size distributions of the (a, c) TPA-Bz and (b, d) TPA-Py CMPs at 77 K.
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TPA-Py CMP was approximately 16 nm. Thus, TEM confirmed that the
planarity of the monomeric building blocks affected the diameter of
the resultant CMPs, with the diameter of the more-planar TPA-Py
CMP being lower than that of the less-planar TPA-Bz CMP.

Dye removal

RhB is a cationic dyestuff commonly used as a fluorescent tracer
for detecting the directions of water flow and their corresponding
rates. It is a fluorescent dye that can be detected readily and precisely
when using traditional fluorimeters [69, 70]. It is also applied widely
as a standard molecule for estimating the features of adsorbents.
Because of their high degrees of conjugation, high surface areas, large
pore volumes, and hydrophobicity, we suspected that our prepared
CMPs would display high efficacy in the adsorption of organic pollu-
tants from water. Accordingly, we evaluated their adsorption behav-
ior in terms of the adsorption of RhB, readily monitored through
their UV�Vis profiles at 554 nm. Upon charging 20-mL vials with our
prepared TPA-Bz and TPA-Py CMPs (4 mg) and an aqueous solution
of RhB (25 mg L�1, 10 mL) and subjecting them to gentle magnetic
stirring (400 rpm), the color of the dye disappeared completely
within 20 and 5 min, respectively (Figs. 5a and 5b).

Furthermore, the fast loading and efficient adsorption of RhB into
our CMPs was also clearly evident in their UV�Vis absorption profiles
(Figs. 5c and 5d). The TPA-Bz and TPA-Py CMPs adsorbed up to 74.4
and 99%, respectively, of the RhB within 10 min. We monitored the
adsorption of RhB into the TPA-Bz and TPA-Py CMPs though their
equilibrium adsorption profiles, then fitted the adsorption data to
Langmuir and Freundlich isotherm models [71�74]; Tables S2 and S3
present the respective fitting data. The Langmuir isotherm model
provided correlation coefficients for the TPA-Bz and TPA-Py CMPs of
0.997 and 0.999, respectively (Figs. 6a and 6b); the Freundlich corre-
lation coefficients of TPA-Bz and TPA-Py CMPs (Figs. 6c and 6d) were
0.914 and 0.846, respectively.

The correlation coefficients for the Freundlich model being lower
than those for the Langmuir model confirmed that the adsorption of
RhB occurred onto our CMPs in the form of monolayers, as well as
with homogenous coverage within their pores. Based on the initial
concentrations of the supernatant and RhB dyestuff, we calculated
the adsorption capacities of the TPA-Bz and TPA-Py CMPs, based on
the Langmuir equation (equation S1), from their corresponding cali-
bration curves. The maximum adsorption capacities of the TPA-Bz
and TPA-Py CMPs, according to the Langmuir model, toward RhB
were 699 and 1633 mg g�1, respectively (Fig. 6a). Thus, the TPA-Py
CMP appears to be a much better adsorbent for RhB than the TPA-Bz
CMP and all other previously reported CMPs based porphyrin, boron
nitride foams, activated carbon, etc. (Table S4). We attribute the
much higher adsorption efficacy of RhB onto the TPA-Py CMP, rela-
tive to the TPA-Bz CMP, to the higher planarity, greater aromaticity,
and larger pores of the former, thereby facilitating physical p-stack-
ing between the CMP and the dyestuff [75]. We suggest that strate-
gies for increasing the degrees of conjugation, aromaticity, and
planarity of CMPs should be taken into consideration when develop-
ing next-generation dye adsorbents. Furthermore, FTIR spectra of our
CMPs after dye adsorption and rinsing featured no additional peaks,
confirming that the CMPs and dye molecules interacted physically
(Figs. S8a and S8b). Recycling tests of the TPA-Bz and TPA-Py CMPs
for the adsorption of RhB revealed only negligible decreases in activ-
ity after 10 cycles (Fig. S8c); thus, these CMPs would appear to be
excellent adsorbents for purifying wastewater.



Fig. 4. (a�b) FE-SEM and (c�d) TEM images of the (a, c) TPA-Bz, (b, d) TPA-Py CMPs.

Fig. 5. (a, b) UV�Vis spectra of an aqueous RhB solution (initial concentration: 25 mg L�1) recorded at various time intervals after the addition of the (a) TPA-Bz and (b) TPA-Py
CMPs. (c, d) Rates of adsorption of RhB from aqueous solutions (initial concentration: 25 mg L�1) onto the (c) TPA-Bz, and TPA-Py CMPs, measured at various times.
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Fig. 6. (a) Langmuir isotherms of TPA-Bz and TPA-Py CMPs. (b) Adsorption isotherms of RhB onto the TPA-Bz and TPA-Py CMPs. (c, d) Freundlich isotherms of RhB onto the (c) TPA-
Bz and (d) TPA-Py CMPs.
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Electrochemical measurements

In recent times, CMPs have proved to be highly efficient superca-
pacitor electrodes, arising from the presence of redox-active blocks
in their skeletons and the wide variety of potential building blocks.
High surface areas, uniform pore sizes, various morphologies, and
specificity have resulted in CMPs being efficient materials for storing
energy. In this study, we prepared electrodes incorporating our fabri-
cated TPA-Bz and TPA-Py CMPs and estimated their efficiencies in
terms of cyclic voltammetry (CV) profiles and galvanostatic charge/
discharge (GCD) measurements. We recorded the CV profiles at vari-
ous scan rates in the range from 5 to 200 mV s�1 within a potential
range from �0.9 to +0.1 V (vs. Ag/AgCl). The CV curves of our TPA-Bz
and TPA-Py CMPs (Figs. 7a and 7b) had quasi-rectangle-like shapes,
confirming that the origin of the capacitance of our materials was
electric double layer capacitance (EDLC), similar to that of other car-
bon substrates. Of note, observed deviation from rectangular shape
were attributed to electrode/electrolyte charge mobility boosted due
to reactions at electrodes or in the electrolytes or even both. If
charges mobilities were reversable, these reactions could be pseudo-
capacitive as the reversable surface reactions could enhance the
charge storage [75�77]. Upon increasing the sweep rate from 5 to
200 mV, the current densities increased while the quasi-rectangular
shapes of the CV profiles were maintained, implying good rate ability
and rapid kinetics [78, 79].

As displayed in Figs. 7c and 7d, we measured the GCD characteris-
tics of the TPA-Bz and TPA-Py CMPs at current densities between 1
and 20 A g�1. The GCD plots of our CMPs were triangular with a slight
bend, confirming the pseudocapacity and EDLC features [80]. Further-
more, the discharging time of the TPA-Py CMP was longer than that of
the TPA-Bz CMP, suggesting higher capacitance for the former. We
estimated the specific capacitances of the TPA-Bz and TPA-Py CMPs
from their corresponding GCD plots, obtaining values of 55.1 and 78
F g�1, respectively, at current density of 1 A g�1 (Fig. 8a). The excel-
lent activity of Py-based CMP resulted from the high electrochemical
performance of its Py units, its excellent porosity and high conductiv-
ity, and the enhanced wettability between the electrode and the elec-
trolyte [81]. As a result, the TPA-Py CMP offered improved
hydrophilicity, which increased the accessible space available to elec-
trolyte ions, thereby allowing rapid mass transport and, conse-
quently, improved electrochemical capacitance. We estimated the
performance of the TPA-Bz and TPA-Py CMPs supercapacitors from
their Ragone plots (Fig. 8b), concluding that the high surface area and
high conductivity of the TPA-Py CMP were responsible for its higher
energy and power densities. Electrochemical impedance spectros-
copy (EIS) confirmed that our CMPs possessed structural stability
within the electrical interfaces (Fig. S9). We examined the cyclic sta-
bility of our prepared CMPs at a current density 10 A g�1; after 2000
cycles, the capacitance retentions of the TPA-Bz and TPA-Py CMPs
were 95.2 and 96.7%, respectively (Figs. 8c and 8d), revealing that
both had high cycling stability. Table S5 reveals that the specific
capacitances of our synthesized TPA-Bz and TPA-Py CMPs were
higher than those of other previously reported porous materials. In
comparison, supercapacitors designed with CMPs based on tetraben-
zonaphthalene-tetraphenylethylene (TPN-TPE CMP), TBN-carbazole
(TBN��Car CMP), and TBN��Car-CMP/SWCNT displayed specific
capacitances of 18.45, 18.90, and 53 F g�1, respectively, at 0.5 A g�1

[80]; DeBlase et al [82]. reported a specific capacitance of 48 F g�1 at
0.1 A g�1 for a conjugated organic framework (COF) based on 2,6-dia-
minoanthraquinone 1,3,5-triformylphloroglucinol (DAAQ�TFP COF);



Fig. 8. (a) Specific capacitances of the TPA-Bz and TPA-Py CMPs, measured at current densities from 0.5 to 20 A g�1, (b) Ragone plots of the TPA-Bz and TPA-Py CMPs, cycling stabili-
ties of the (c) TPA-Bz and (d) TPA-Py CMPs, measured at 10 A g�1 over 2000 cycles.

Fig. 7. (a, b) CV profiles of the (a) TPA-Bz and (b) TPA-Py CMPs. (c, d) GCD spectra of the (c) TPA-Bz and (d) TPA-Py CMPs, measured at various currents.
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El-Mahdy et al [83]. synthesized six COFs based on TPA that displayed
specific capacitances of 51.3, 14.4, 5.1, 2.4, 0.34, and 0.24 F g�1 at 0.1
A g�1; Park et al [84]. reported specific capacitances of 71 F g�1 at 1 A
g�1 for their N��CMP system and 13.7 F g�1 at 1 A g�1 for their CoPc-
CMP system [85]; and Yang et al [86]. reported an MXene-based con-
jugated microporous polymer (PAQBz) exhibiting a capacitance of
106 F g�1 at 0.3 A g�1.

Conclusion

We have prepared two new TPA-based CMPs that possess out-
standing thermal stabilities, high surface areas, and high chemical
resistances. We examined these CMPs as adsorbents for purifying
water and for energy storage. Our TPA-based CMPs displayed great
potential for adsorbing trace pollutants from water. The TPA-Bz and
TPA-Py CMPs possessed high adsorption capacities toward the dye
RhB in an aqueous environment, with these high adsorption capaci-
ties occurring within short periods of time (10 min). Furthermore,
these CMPs displayed good efficacy and high stability when used as
supercapacitor electrodes. Consequently, TPA-based CMPs appear to
be useful as new and efficient materials for both the removal of RhB
from wastewater (1633 mg g�1) and for energy storage (78 F g�1).
We anticipate that such materials might find applicability in various
fields in the near future. Most importantly, we suggest a new strat-
egy-increasing the degrees of conjugation and planarity of mono-
meric building blocks- for the development of next-generation
materials for water treatment and energy storage.
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