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Abstract: In this study, we synthesized three hybrid microporous polymers through Heck couplings
of octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2), tetrabro-
mothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-Br2), obtaining
the porous organic–inorganic polymers (POIPs) POSS-OXD, POSS-Th, and POSS-TPTh, respectively.
Fourier transform infrared spectroscopy and solid state 13C and 29Si NMR spectroscopy confirmed
their chemical structures. Thermogravimetric analysis revealed that, among these three systems, the
POSS-Th POIP possessed the highest thermal stability (T5: 586 ◦C; T10: 785 ◦C; char yield: 90 wt%),
presumably because of a strongly crosslinked network formed between its OVS and Th moieties.
Furthermore, the specific capacity of the POSS-TPTh POIP (354 F g−1) at 0.5 A g−1 was higher than
those of the POSS-Th (213 F g−1) and POSS-OXD (119 F g−1) POIPs. We attribute the superior electro-
chemical properties of the POSS-TPTh POIP to its high surface area and the presence of electron-rich
phenyl groups within its structure.

Keywords: octavinylsilsesquioxane; porous organic inorganic polymers; thermal stability; cyclic
voltammetry; tetraphenylthiophene; supercapacitor

1. Introduction

Porous organic polymers (POPs) are multidimensional materials featuring strong
covalent bonds among their organic building blocks. They have recently gained pop-
ularity in the field of porous materials because of their low density, high porosity, and
excellent thermal stability [1–10]. POPs have found applications in, for example, energy
storage, lithium-ion batteries, gas separation, nanofiltration, drug carrying, optoelectronics,
photocatalysis, and water treatment [11–28]. They have been synthesized using various
techniques, including Friedel–Crafts, Yamamoto, Schiff base, Sonogashira, Yamamoto,
Heck, and Suzuki reactions [29–42]. Furthermore, POPs comprise many subgroups of ma-
terials, including metal–organic frameworks, conjugated microporous polymers, covalent
organic frameworks, hypercrosslinked polymers, polymers of intrinsic microporosity, and
covalent triazine-based frameworks [20–25]. Hybrid porous materials incorporating poly-
hedral oligomeric silsesquioxane (POSS) units are interesting because of their outstanding

Molecules 2022, 27, 6238. https://doi.org/10.3390/molecules27196238 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196238
https://doi.org/10.3390/molecules27196238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-0301-8372
https://orcid.org/0000-0001-7079-932X
https://orcid.org/0000-0002-2658-4222
https://orcid.org/0000-0002-8062-8708
https://orcid.org/0000-0001-9704-9545
https://orcid.org/0000-0002-4306-7171
https://doi.org/10.3390/molecules27196238
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196238?type=check_update&version=1


Molecules 2022, 27, 6238 2 of 15

mechanical and thermal characteristics and high surface areas [42–47]. POSS derivatives are
nanosized compounds having diameters of 1–3 nm, with regulated porosity and defined
structures [48–56]. Many POPs synthesized from POSS derivatives have exhibited remark-
able thermal stabilities, fluorescence characteristics, and surface areas [56–65]. The boom in
wearable and portable electronics has led to tremendous demand for cheap, eco-friendly,
and high-performance energy-storage appliances [66–72]. The most crucial factors for a
high-energy storage system are excellent energy density, safe operation, fabrication from
accessible materials, high durability, and a prolonged life cycle. Although supercapacitors
are energy storage systems that satisfy all these requirements [70–72], their energy densities
have remained lower than those of batteries, thereby limiting their applications to date [73].
Incorporating redox-active groups into carbonaceous substances can enhance the perfor-
mance of supercapacitors, potentially imparting them with functions that combine the
mechanisms of pseudocapacitors and electrical double-layer capacitors (EDLCs) [74,75]. In
this study, we synthesized three new hybrids porous POSS materials displaying excellent
porosity and thermal stability, with potential for use in energy storage. Heck couplings of
octavinylsilsesquioxane (OVS) with 2,5-bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2),
tetrabromothiophene (Th-Br4), and 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (TPTh-
Br2) in N,N-dimethylformamide (DMF) in the presence of a Pd catalyst and triethylamine
(Et3N) as the base afforded the porous organic–inorganic polymers (POIPs) POSS-OXD,
POSS-Th, and POSS-TPTh, respectively (Scheme 1). Herein, we describe their chemical
structures, morphologies, pore sizes, thermal stabilities, electrochemical properties, and
CO2 capture performance.
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2. Synthesis Methods
2.1. Materials

Potassium carbonate (K2CO3), sodium bicarbonate (NaHCO3), and OVS were pur-
chased from Alfa Aesar. 4-Bromobenzoyl bromide, hydrazine monohydrate (NH2NH2·H2O),
methanol (MeOH), thiophene (Th), 1,4-dioxane (DO), tetrahydrofuran (THF), acetone, and
DMF were procured from Acros. Benzeneboronic acid [PhB(OH)2], palladium
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tetrakis(triphenylphosphine) [Pd(PPh3)4], copper iodide (CuI), and Et3N were obtained
from Sigma–Aldrich (Darmstadt, Germany).

2.2. N,N′-Bis(4-bromobenzoyl)hydrazine

A solution of 4-bromobenzoyl bromide (3.00 g, 11.3 mmol) and Et3N (3.75 mL,
27.0 mmol) in CHCl3 (50 mL) was cooled in an ice bath. NH2NH2·H2O (0.28 mL) was
added and then the mixture was stirred for 10 h. The resultant white solid was washed
sequentially with water and 10% NaHCO3 and then dried in an oven for 24 h (Yield: 80%,
Scheme S1a). FTIR (Figure S1a): 3190 (NH), 1650 (C=O) cm−1. 1H NMR (Figure S2a): 10.67
(NH), 7.74–7.85 (ArH) ppm. 13C NMR (Figure S2c): 166.21 (C=O), 132.51–127.21 (aromatic
carbon nuclei) ppm.

2.3. 2,5-Bis(4-bromophenyl)-1,3,4-oxadiazole (OXD-Br2)

A mixture of N,N′-bis(4-bromobenzoyl)hydrazine (2.50 g, 6.27 mmol) and POCl3
(74 mL) were heated at 80 ◦C for 24 h. The mixture was poured into cold water. The
white needles were collected and washed with cold EtOH and water to afford OXD-Br2
(85%) (Scheme S1b). FTIR (Figure S1b): 3086 (C–H aromatic) cm−1. 1H NMR (Figure S2b):
8.07–7.85 (8H, ArH) ppm. 13C NMR (Figure S2d): 164.11 (C=N), 133.52–122.66 ppm.

2.4. 2,3,4,5-Tetrabromothiophene (Th-Br4)

Br2 (5.3 mL, 0.033 mmol) was added slowly to a solution of Th (2.0 g, 0.023 mmol)
in CHCl3 (15 mL) at 0 ◦C and then the mixture was heated under reflux for 8 h. NaOH
solution (2 M,100 mL) was added and then the mixture was heated under reflux for 8 h. The
solid was filtered off and washed with water and EtOH to give Th-Br4 as a white powder
(80%) (Scheme S2). FTIR (KBr, cm−1): 1636 (C=C). 1H NMR (500 MHz, CDCl3, δ, ppm,
Figure S3): No peaks detected. 13C NMR (125 MHz, CDCl3, δ, ppm, Figure S4): 116.936,
110.284.

2.5. 2,3,4,5-Tetraphenylthiophene (TPTh)

A mixture of Th-Br4 (2.00 g, 1.40 mmol), Pd(PPh3)4 (0.300 g, 0.0500 mmol), 4-
phenylboronic acid (3.70 g, 6.53 mmol), and K2CO3 (8.30 g, 16.6 mmol) was degassed
three times under a flow of N2. DO (50 mL) and H2O (10 mL) were added and then
the mixture was heated at 90 ◦C for 48 h. The solution was placed in ice-cold H2O and
neutralized with HCl (2 mL). The solids were filtered off, washed with water and MeOH,
and dried to produce a white powder (Scheme S3). FTIR (KBr, cm−1, Figure S5): 3063 (C–H
aromatic), 1595 (C=C). 1H NMR (500 MHz, DMSO-d6, δ, ppm, Figure S6): 7.37–6.97 (16H,
CH aromatic). 13C NMR (125 MHz, DMSO-d6, δ, ppm, Figure S7): 140.31–127.74 (Th and
aromatic carbon nuclei).

2.6. 2,5-Bis(4-bromophenyl)-3,4-diphenylyhiophene (TPTh-Br2)

A solution of TPTh (5.00 g, 12.8 mmol) and Br2 (4.20 g) in CHCl3 (40 mL) was cooled
at 0 ◦C (ice bath) for 4 h. After evaporation of the solvent, the residue was washed with
EtOH to give a yellow solid (85%) (Scheme S4). FTIR (KBr, cm−1, Figure S8): 3047.38 (C–H
aromatic). 1H NMR (500 MHz, DMSO-d6, δ, ppm, Figure S9): 7.37–6.81 (ArH). 13C NMR
(125 MHz, DMSO-d6, δ, ppm, Figure S10): 140.87–121.97 (Th and aromatic carbon nuclei).

2.7. POSS-OXD, POSS-Th, and POSS-TPTh POIPs

A mixture of OVS (0.600 g, 0.950 mmol), OXD-Br2 (0.700 g, 1.84 mmol) [or Th-Br4
(0.750 g, 1.88 mmol) or TPTh-Br2 (0.86 g, 1.57 mmol)], anhydrous K2CO3 (2.09 g, 15.1 mmol),
and Pd(PPh3)4 (0.0500 g, 0.0430 mmol) in DMF (50 mL) was heated under reflux for 48 h
at 120 ◦C under N2. The resulting solid was collected, washed sequentially with MeOH,
acetone, and THF, then dried in an oven to afford the POSS-OXD POIP (white powder,
0.45 g, 75%) [or the POSS-Th (white powder, 0.55 g, 92%) or POSS-TPTh (yellow powder,
0.51 g, 85%) POIPs].
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3. Results
3.1. Synthesis and Character of POSS-OXD, POSS-Th and POSS-TPTh POIPs

Scheme 1 illustrates the syntheses of the three types of hybrid porous POSS frame-
works: POSS-OXD, POSS-Th, and POSS-TPTh. We prepared OXD-Br2 through the reac-
tion of N,N′-bis(4-bromobenzoyl)hydrazine with POCl3 at 80 ◦C (Scheme S1) and Th-Br4
through the reaction of Th with Br2 in CHCl3 at 0 ◦C (Scheme S2). We then obtained TPTh
(Scheme S3) in high purity and yield through Suzuki coupling of Th-Br4 with PhB(OH)2
in toluene in the presence of Pd(PPh3)4 and K2CO3. Bromination of TPTh in CH2Cl2 in
the presence of Br2 afforded TPTh-Br2 as a yellow solid (Scheme S4). Finally, we obtained
the POSS-OXD, POSS-Th, and POSS-TPTh POIPs through Heck couplings of OXD-Br2,
Th-Br4, and TPTh-Br2, respectively, with OVS in DMF in the presence of Pd(PPh3)4, Et3N,
and K2CO3 at 120 ◦C for 48 h. These POSS-POIPs (Scheme 1) displayed poor solubility in
all organic solvents, consistent with the successful Heck reactions of the OVS units and the
formation of POSS materials with high degrees of crosslinking.

FTIR spectroscopy revealed the functional groups present in the synthesized porous
POSS-POIP materials (Figure 1). The spectrum of OVS featured absorption bands at 3066,
1600, and 1106 cm−1, corresponding to the stretching of C=C–H, C=C, and Si–O–Si bonds,
respectively (Figure 1a). The FTIR spectra of OXD-Br2, Th-Br4, TPTh-Br2, POSS-OXD POIP,
POSS-Th POIP, and POSS-TPTh POIP revealed signals for aromatic C–H bonds in the range
3042–3082 cm−1 and for C=C stretching in the range 1600–1640 cm−1 (Figure 1b–g). In
addition, the signals for the Si–O–Si units from all three porous POIPs were wider than that
of OVS, consistent with the formation of crosslinked networks (Figure 1). In addition, the
FTIR spectra of all the POIPs featured bands representing OH groups, resulting from their
absorption of water.
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Figure 1. FTIR spectra of (a) OVS, (b) OXD-Br2, (c) POSS-OXD POIP, (d) Th-Br4, (e) POSS-Th POIP,
(f) TPTh-Br2, and (g) POSS-TPTh POIP, recorded at 25 ◦C.
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The solid state 13C NMR spectra of the POIPs (Figure 2a) featured signals for their
carbon nuclei in the ranges 121.7–134.85 ppm for the POSS-OXD POIP, 130.64–133.62 ppm
for the POSS-Th POIP, and 118.42–136.14 ppm for the POSS-TPTh POIP, corresponding
to the aromatic and SiCH=CH carbon nuclei of their framework structures. Solid state
29Si NMR spectroscopy confirmed the presence of POSS units in these POIPs frameworks
(Figure 2b), with signals at −13.5 and −80 ppm assigned to Si=CH2 and T3 moieties,
respectively.
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POIPs. * is the side band of solid state nuclear magnetic resonance spectroscopy (NMR).

We used TGA to examine the thermal stabilities of the POSS-OXD, POSS-Th, and
POSS-TPTh POIPs (Figure 3a). The thermal decomposition temperatures Td5 and Td10 and
the char yields of the POSS-OXD POIP were 260 ◦C, 386 ◦C, and 69 wt%, respectively; for
POSS-Th POIP, they were 586 ◦C, 786 ◦C, and 90 wt%, respectively; and for the POSS-TPTh
POIP, they were 513 ◦C, 586 ◦C, and 86 wt%, respectively. For all three porous POIPs,
these high values are consistent with the presence of highly crosslinked networks formed
between the OVS and OXD, Th, and TPTh moieties. Notably, the thermal stability and char
yield of the POSS-Th POIP were higher than those of the POSS-OXD and POSS-TPTh POIPs,
as well as those of all other previously reported porous POSS systems [57,58], implying its
higher crosslinking density. Table 1 summarizes the thermal properties of the POSS-OXD,
POSS-Th, and POSS-TPTh POIPs. X-ray diffraction revealed that the POSS-OXD, POSS-Th,
and POSS-TPTh POIPs were all amorphous materials with no long-range order in their
characteristics (Figure 3b), consistent with data reported previously for porous hybrid
POSS materials [57,58].
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Table 1. TGA, BET, and capacitance data for the POIPs.

Sample Td10 (◦C) Char Yield
(wt.%)

Surface Area
(m2 g−1)

Pore Volume
(cm3 g−1)

Pore Size
(nm)

Capacity at 0.5 A g−1

(F g−1)
POSS-OXD POIP 386 69 94 0.02 2.34 119

POSS-Th POIP 786 90 605 0.23 1.98 213
POSS-TPTh POIP 586 86 682 0.23 1.87 354

We performed N2 adsorption/desorption measurements to obtain the porosity pa-
rameters of the POIPs (Figure 4a–c, Table 1). With reference to IUPAC classifications, the
adsorption isotherm of the POSS-OXD POIP was of type III; that of POSS-Th POIP was of
types II and IV; and that of POSS-TPTh POIP had type II characteristics. Furthermore, the
N2 absorption uptake potentials for the POSS-Th and POSS-TPTh POIPs increased in the
low- and high-pressure regions, confirming the existence of meso- and microspores in their
structures; in contrast, POSS-OXD POIP had high N2 absorption uptake at high pressure,
suggesting the presence of only macropores. The specific surface area of the POSS-TPTh
POIP (682 m2 g−1) was higher than those of the POSS-Th (605 m2 g−1) and POSS-OXD
(94 m2 g−1) POIPs. The pore diameters of the POSS-OXD, POSS-Th, and POSS-TPTh POIPs
were 2.34, 1.96, and 1.88 nm, respectively (Figure 4d–f, Table 1); their total pore volumes
were 0.02, 0.23, and 0.23 cm3 g−1, respectively.
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Figure 4. (a–c) N2 adsorption/desorption isotherms and (d–f) pore diameter patterns of the
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Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
revealed (Figure 5) that the morphologies of the POSS-OXD, POSS-Th, and POSS-TPTh
POIPs were irregular clusters of tiny spherical particles. Furthermore, energy dispersive
X-ray (EDX) spectroscopy of the SEM images (Figure S11) demonstrated the presence of
C, N, O, and Si atoms in the POSS-OXD POIP and C, O, Si, and S elements in both the
POSS-Th and POSS-TPTh POIPs.
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We tested these three porous POSS materials for their ability to capture CO2 at 298 ◦C
(Figure 6). The POSS-OXD, POSS-Th, and POSS-TPTh POIPs had CO2 capture capacities of
18.27, 35.68, and 50.42 mg g−1, respectively. The relatively high CO2 capture capacity of the
POSS-TPTh POIP was presumably due to its Brunauer–Emmett–Teller (BET) surface area
being higher than those of the POSS-Th and POSS-OXD POIPs.
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3.2. Electrochemical Performance of the POSS-OXD, POSS-Th, and POSS-TPTh POIPs

We employed cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD)
measurements to examine the electrochemical behavior of our three POIPs in aqueous 1 M
KOH, using a three-electrode configuration. We recorded the CV profiles of the POSS-OXD,
POSS-Th, and POSS-TPTh POIPs at various scan rates between 1.00 to 0 V (Figure 7a–c).
The rectangular CV profiles with slight humps for all three POSS systems indicate that their
capacitive effects were caused by EDLC [76,77]. The humps suggest the involvement of
pseudocapacitance responses emerging from the presence of the N and S heteroatoms and
electron-rich phenyl groups in the OXD, Th, and TPTh structures, respectively, facilitating
the passage of the electrolyte to the electrode area and for the electrons to keep moving
from one electrode to another [78,79]. Upon increasing the scan rate, the current densities
improved without affecting the shapes of the CV curves, confirming the high-rate capabili-
ties, stabilities, and kinetic features of all three porous POSS systems. The electrochemical
properties of the POSS-TPTh POIP were superior to those of the POSS-Th and POSS-OXD
POIPs, presumably because of its electron-rich phenyl groups and S heteroatoms, high
surface area, and blend of micro- and mesoporosity. All these factors would ensure higher
mobility of the electrolyte to the surface of the electrode, resulting in accelerated mass trans-
port and enhanced electrochemical performance. Figure 7d–f display the GCD behavior of
the POSS-OXD, POSS-Th, and POSS-TPTh POIPs, respectively, measured at various current
densities. In the discharge profiles, each porous POSS system provided a nearly triangular
GCD curve with a small bend, indicating the combined impacts of pseudocapacitance
and EDLC.
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Figure 7. (a–c) CV and (d–f) GCD traces of the (a,d) POSS-OXD, (b,e) POSS-Th, and (c,f) POSS-TPTh
POIPs.

Furthermore, the charging profiles were smaller than the discharging curves through-
out the GCD analyses, indicating that all the porous POIPs displayed excellent capacitance.
The discharging profile of the POSS-TPTh POIP was more significant than those of the
POSS-Th and POSS-OXD POIPs, indicating its relatively high specific capacitance. It is
worth mentioning that the IR drop in the galvanostatic charge-discharge profile is related
to the equivalent series resistance, charge-transfer resistance, and double-layer capacitance
of the energy storage devices, such as supercapacitors. A supercapacitor has its own stored
energy in the form of internal resistance which is lost during this process [80]. Figure 8a
reveals that the specific capacitances of the POSS-OXD, POSS-Th, and POSS-TPTh POIPs
were 119, 213, and 354 F g−1, respectively, at a current density of 0.5 A g−1. Furthermore,
the specific capacitance gap remained large when measured at a higher current density of
20 A g−1, where the POSS-OXD, POSS-Th, and POSS-TPTh POIPs had specific capacities
of 16, 15, and 30.4 F g−1, respectively. We suggest that the structure of the POSS-TPTh
POIP was responsible for its relatively outstanding performance, with its electron-rich
phenyl rings and S heteroatoms allowing the electrolytes to approach the electrode surface
more rapidly than in the POSS-OXD and POSS-Th POIPs. The specific capacitances of all
three porous POIPs decreased upon increasing the current density from 0.5 to 20 A g−1,
presumably because of insufficient time for ion transportation at higher current densities.
Moreover, the energy density of the POSS-TPTh POIP (176.75 W h kg−1) was also higher
than those of the POSS-Th (106.59 W h kg−1) and POSS-OXD (59.57 W h kg−1) POIPs
(Figure 8b).
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Finally, we examined the stabilities of all three POIPs through GCD analyses over
2000 cycles at 10 A g−1 (Figures 9a and S12–14). The POSS-OXD, POSS-Th, and POSS-TPTh
POIPs displayed outstanding cycling stabilities, with retention of their capacitance of 93.41,
96.27, and 97.56%, respectively. In addition, the specific capacitances of both the POSS-Th
and POSS-TPTh POIPs were excellent when compared with those of previously published
porous frameworks and porous polymer composite materials (Figure 9b) [27,28,58].
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Figure 9. (a) Durability and (b) electrochemical performance of the POSS-OXD, POSS-Th, and
POSS-TPTh POIPs, compared with those of previously reported porous materials.

Additionally, we investigated the electrochemical characteristics of all three POSS-
POIP samples in two electrode systems for a symmetric supercapacitor through coin cells.
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The electrochemical characteristics were conducted between a potential range of 0 to−0.2 V
at different scan rates, as shown in Figure S15. The CV profiles of all the POSS-POIPs
electrodes (Figure S15a–c) were approximately rectangular with the presence of humps in
the low potential window—the expected response of supercapacitors due to the existence
of EDLC and pseudocapacitive capacitive characteristics. The pseudocapacitance response
was caused by the introduction of heteroatoms (N, O, and S) in the backbone of the POSS-
POIPs. The functionality of the electrodes seemed to be stable at high scan rates, indicating
that the current density also increased, revealing improved stability and a symmetric
capacity of all POSS-POIPs materials. Furthermore, the GCD profiles (Figure S15d–f)
were nearly triangular with a bent shape due to the presence of heteroatoms in all the
POSS-POIPs, demonstrating EDLC and pseudocapacitance effects. The specific capacitance
was observed as 41.05, 27.63 and 7.11 F g−1 for POSS-TPTh POIP, POSS-Th POIP, and
POSS-OXD POIP electrode samples, respectively, at 0.5 A g−1. Thus, these results revealed
that POSS-TPTh POIP experienced superior electrochemical properties to POSS-Th POIP,
and POSS-OXD POIP. The superior electrochemical properties of the POSS-TPTh POIP
sample were attributed to its high surface area and electron-rich phenyl group in its
structure. In order to understand the resistance behavior of these as-prepared electrodes
as symmetric supercapacitors devices, we carried out the impedance measurement, as
shown in Figure S16. The EIS plots reveal the ohmic resistance, which is also known as
the series resistance, of these electrode materials to be 2.083, 3.799 and 4.491 Ω for POSS-
TPTh POIP, POSS-OXD POIP and POSS-Th POIP, respectively. This confirms the superior
performance of the POSS-TPTh POIP electrodes compared to the others by virtue of their
smallest series resistance offering better conductivity. Apart from this, all the electrodes
displayed a clear semicircle in the higher frequency region which corresponds to their
charge-transfer resistance. As indicated in the plots, the charge-transfer values obtained
from these electrodes were 4.479, 13.72 and 20.16 Ω, for POSS-TPTh POIP, POSS-OXD POIP
and POSS-Th POIP, respectively. The electrode composed of POSS-TPTh POIP offers almost
negligible charge-transfer resistance, with improved conductivity compared to the others.
Thus, POSS-TPTh POIP is an outstanding electrode material for energy storage which has
the potential to be used in real-life applications.

4. Conclusions

In conclusion, we used Heck reactions to synthesize the hybrid OVS-based POIPs
POSS-OXD, POSS-Th, and POSS-TPTh. TGA revealed that the thermal stability of the
POSS-Th POIP (T10: 785 ◦C; char yield: 90 wt%) was higher than those of the POSS-OXD
and POSS TPTh POIPs. N2 isothermal profiles and electrochemical analyses indicated that
POSS-TPTh POIP had the highest BET surface area (682 m2 g−1) and an excellent specific
capacity (354 F g−1) when compared with those of the other two POIPs. The superior
energy storage performance of the POSS-TPTh POIP was due to its high surface area
and electron-rich phenyl groups, which were not present in the POSS-OXD and POSS-Th
POIPs. In addition to this, we evaluated the electrochemical performance of a symmetric
supercapacitor two-electrode device which exhibited great potential for energy-storage.
These findings suggest that the POSS-TPTh and POSS-Th POIP materials, with their high
surface areas, might find application in wastewater treatment and in Li and Li-S batteries.

Supplementary Materials: The following are available online: https://www.mdpi.com/article/
10.3390/molecules27196238/s1, Scheme S1. Syntheses of (a) N,N′-bis(4-bromobenzoyl)hydrazine
and (b) OXD-Br2. Scheme S2. Synthesis of Th-Br4 through bromination reaction of thiophene.
Scheme S3. Synthesis of TPTh from Th-Br4 through Suzuki coupling reaction. Scheme S4. Synthesis
of TPTh-Br2 from Th-4Ph through bromination reaction. Figure S1. FTIR spectra of (a) N,N′-bis(4-
bromobenzoyl)hydrazine and (b) OXD-Br2. Figure S2. (a,b) 1H and (c,d) 13C NMR spectra of (a,c)
N,N′-bis(4-bromobenzoyl)hydrazine and (b,c) OXD-Br2. Figure S3. 1H NMR spectrum of Th-Br4.
Figure S4. 13C NMR spectrum of Th-Br4. Figure S5. FTIR spectrum of TPTh. Figure S6. 1H NMR
spectrum of TPTh. Figure S7. 13C NMR spectrum of TPTh. Figure S8. FTIR analysis of TPTh-Br2.
Figure S9. 1H NMR analysis of TPTh-Br2. Figure S10. 13C NMR analysis of TPTh-Br2. Figure S11.

https://www.mdpi.com/article/10.3390/molecules27196238/s1
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SEM and elemental mapping (EDX) profile of the as-prepared (a) POSS-OXD POIP, (b) POSS-Th POIP
and (c) POSS-TPTh POIP. Figure S12. Stability test of the as-prepared POSS-OXD POIP. Figure S13.
Stability test of the as-prepared POSS-Th POIP. Figure S14. Stability test of the as-prepared POSS-
TPTh POIP. Figure S15. Cyclic voltammetry curves (a–c) and (d–f) galvanostatic charge-discharge
profiles of POSS-OXD, POSS-Th and POSS-TPTh POIPs. Figure S16. Nyquist plots of POSS-Th,
POSS-TPTh, and POSS-OXD POIPs.
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