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Abstract: In this study, we prepared a difunctionalized cyanate ester double-decker silsesquioxane
(DDSQ-OCN) cage with a char yield and thermal decomposition temperature (Td) which were both
much higher than those of a typical bisphenol A dicyanate ester (BADCy, without the DDSQ cage)
after thermal polymerization. Here, the inorganic DDSQ nanomaterial improved the thermal behavior
through a nano-reinforcement effect. Blending the inorganic DDSQ-OCN cage into the epoxy resin
improved its thermal and mechanical stabilities after the ring-opening polymerization of the epoxy
units during thermal polymerization. The enhancement in the physical properties arose from the
copolymerization of the epoxy and OCN units to form the organic/inorganic covalently bonded
network structure, as well as the hydrogen bonding of the OH groups of the epoxy with the SiOSi
moieties of the DDSQ units. For example, the epoxy/DDSQ-OCN = 1/1 hybrid, prepared without
Cu(II)-acac as a catalyst, exhibited a glass transition temperature, thermal decomposition temperature
(Td), and char yield (166 ◦C, 427 ◦C, and 51.0 wt%, respectively) that were significantly higher than
those obtained when applying typical organic curing agents in the epoxy resin. The addition of
Cu(II)-acac into the epoxy/BADCy and epoxy/DDSQ-OCN hybrids decreased the thermal stability
(as characterized by the values of Td and the char yields) because the crosslinking density and post-
hardening also decreased during thermal polymerization; nevertheless, it accelerated the thermal
polymerization to a lower curing peak temperature, which is potentially useful for real applications
as epoxy molding compounds.

Keywords: epoxy; cyanate ester; POSS; thermal stability; nanocomposites

1. Introduction

Epoxy resins are the most common thermosetting polymers for high-performance
applications (e.g., coatings, adhesives, printed circuit boards) in, for example, the aerospace
industry and for microelectronic encapsulation, with those featuring aromatic units receiv-
ing much current interest [1–6]. In general, the high crosslinking densities that arise when
using a triglycidyl ether of p-aminophenol or tetraglycidyl diamino diphenylmethane as the
crosslinking agent result in epoxies with high glass transition temperatures (Tg) but very
brittle properties [7–10]. Blending thermoplastic polymers (e.g., flexible block copolymers)
into epoxy resins can enhance their toughness, as a result of intermolecular interactions
occurring after the ring-opening polymerization of the epoxy units forms hydroxyl (OH)
groups [11–14]. Although epoxy technology has been studied for many years, typical
epoxy resins are still difficult to employ in applications requiring temperatures higher than
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150 ◦C, even when they possess high crosslinking densities of highly aromatic units in their
backbones [14–16].

Improvements in the thermal stabilities of epoxy resins will be necessary for the
formulation of reliable epoxy molding compounds (EMCs) necessitating high-temperature
operation [17–20]. Copolymerization and blending with high-performance polymers can be
simple approaches for the enhancement of the heat resistance or thermal stability of epoxy
resins. Cyanate esters [21,22], bismaleimides [23,24], and polyimides [25] have been typical
high-performance materials for copolymerization with epoxy resin. Polycyclotrimerization
has been used to form cross-linked network structures with aromatic triazine rings through
the thermal heating of cyanate ester (O-C≡N) compounds, resulting in excellent thermal
stability. Cyanate ester resins possessing low dielectric constants and displaying low
dielectronic losses for high-frequency applications have also received much interest because
of their low polarities and large free volumes after thermal polymerization [26–28]. As a
result, the copolymerization of cyanate esters with epoxy resins provides a high degree of
freedom when designing copolymers from such monomers [21,22].

The thermal stabilities of poly(cyanate ester)s have been improved through the use
of reactive functional units or through mixing with inorganic nanomaterials, includ-
ing clays [27,29], graphene [30,31], carbon nanotubes [32,33], and polyhedral oligomeric
silsesquioxanes (POSSs) [34–40]. Furthermore, the incorporation of inorganic POSS nano-
materials has improved the oxidation resistance and thermal stability, while decreasing
the surface free energy, of epoxy/cyanate ester hybrids [34–40]. Such polymer/POSS
hybrids are generally classified into chain-end or side-chain types, prepared from mono-
functionalized or multi-functionalized POSS nanomaterials, with the latter forming in-
soluble cross-linked structures [41]. For example, octa-functionalized cyanate ester or
epoxy POSS nanomaterials have been used previously to form epoxy/cyanate ester/POSS
hybrids [34–40], but these multi-functionalized POSS nanomaterials have not formed well-
defined crosslinked structures due to complexities arising from their three-dimensional
(3D) geometries [23], with the residual cyanate ester or epoxy groups making the resulting
epoxy resins unsuitable for high-performance electronics applications [22].

Recently, double-decker-shaped polyhedral silsesquioxanes (DDSQs) have been used
as bifunctionalized POSS derivatives to form the main chain-type polymer/DDSQ hy-
brids with polyimides, phenolics, polyurethanes, polybismaleimides, and polybenzox-
azines [23,42–46]. We have also employed a bi-functionalized cyanate-ester DDSQ nano-
material to provide new organic/inorganic hybrids in which the O-C≡N units undergo
cyclotrimerization, forming a high concentration of s-triazine rings after thermal polymer-
ization, with a large surface area (392 m2/g) and mesoporous (ca. 5.6 nm) characteris-
tics [47]. Therefore, we expected that incorporating a DDSQ-OCN derivative into the epoxy
might enhance the thermal stability of the resulting epoxy resin, because of the intrinsic
inorganic properties of DDSQ-OCN and its physical dispersion through noncovalent (hy-
drogen bonding) and covalent (the copolymerization of cyanate ester and epoxy units)
bonding. In this study, we synthesized epoxy resin/DDSQ-OCN hybrids and characterized
them using various thermal and spectroscopic techniques, comparing their properties
with those of typical epoxy/cyanate ester hybrids prepared without DDSQ nanomaterials,
including bisphenol A cyanate ester (BADCy).

2. Results
2.1. Preparation of the BADCy Monomer

Figure 1a displays the procedure used for the synthesis of BADCy; we confirmed its
structure using Fourier transform infrared (FTIR) spectroscopy, 1H NMR spectroscopy, and
thermogravimetric analysis (TGA) (Figure 1b–d) [47]. The FTIR spectra of bisphenol A
and BADCy featured strong signals at 2235 and 2274 cm−1, corresponding to the O-C≡N
functional groups; the disappearance of the signals for OH units in the range from 3100 to
3500 cm−1 indicated that the substitution reaction was complete. Figure 1c presents the
1H NMR spectra of bisphenol A and BADCy. The signals for the aromatic CH protons
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were doublets of doublets, with the electron-donating OH groups making them highly
shielded, with large coupling constants. After the reaction of BPA with BrCN, the absence
of a signal for the OH groups at 4.71 ppm confirmed the formation of the dicyanate esters.
The aromatic CH units became more deshielded and the coupling constants of the doublets
of doublets decreased because the O-C≡N units were electron withdrawing. In addition,
the values obtained after the integration of the various signals (Figure S1) were consistent
with the theoretical predictions. Figure 1d presents the TGA analyses of BPA and BADCy
monomers. The thermal degradation temperature and char yield both increased after the
substitution reaction had formed BADCy, because the O-C≡N units could react to produce
the triazine structure depicted in Scheme 1a, thereby inhibiting oxygen contact and carbon
residue formation [21,22].

Figure 1. (a) Synthesis and (b) FTIR spectrum, (c) 1H NMR spectrum, and (d) TGA analysis of the
BADCy monomer.

2.2. Thermal Polymerization of Epoxy/BADCy Hybrids

Figure 2 displays differential scanning calorimetry (DSC) traces of the epoxy/BADCy
= 1/1 hybrid prepared without a catalyst (Figure 2a) and the epoxy/BADCy = 1/1 hy-
brids prepared with Cu(II)-acac as a catalyst (0.01 wt%) (Figure 2b), measured at a heat-
ing rate of 20 ◦C min−1. The thermal polymerization peaks for the epoxy/BADCy and
epoxy/BADCy/Cu(II)-acac hybrids appeared at 244 and 212 ◦C, respectively. Upon increas-
ing the thermal polymerization temperature of the epoxy resin, the thermal polymerization
peaks vanished. When we performed the thermal polymerization at 210 ◦C, the ring-
opening polymerization of the remaining epoxy groups was characterized by peaks at
312 and 310 ◦C, respectively. Increasing the thermal polymerization temperature to 240
and 270 ◦C, however, caused the thermal polymerization peaks to disappear, which was
indicative of complete thermal curing. These DSC analyses revealed that the addition of
Cu(II)-acac as a catalyst decreased the thermal curing temperature; Scheme 1b presents
a possible mechanism for the formation of the triazine structure at a relatively lower
temperature, compared with that (Scheme 1a) occurring in the absence of the Cu(II)-acac
catalyst [21,22].
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Scheme 1. Mechanism of the cyclotrimerization of the cyanate ester resin to form the triazine rings
(a) without a catalyst at a high temperature, and (b) with Cu(II)-acac as a catalyst at a low temperature.

In order to examine the mechanisms of the thermal polymerizations of the epoxy/BADCy
hybrids in the presence and absence of Cu(II)-acac, we recorded the FTIR spectra of these
hybrids before and after thermal polymerization at 210, 240, and 270 ◦C [(Figure 2c,d),
respectively]. The spectrum of pure BADCy featured signals for the O-C≡N units at 2235
and 2274 cm−1. The spectra of the pure DGEBA-type of epoxy resin exhibited absorption
peaks at 914 cm−1 for the epoxy units in both Figure 2c,d; the signals for the O-C≡N and
epoxy units both disappeared, however, after thermal polymerization at 210, 240, and
270 ◦C. Figure S2 reveals that pure BADCy displayed its thermal polymerization peak
at 306 ◦C. The epoxy resin itself could catalyze the cyclotrimerization of O-C≡N units,
because its addition—without and with Cu(II)-acac—decreased this thermal polymerization
temperature to 244 and 212 ◦C, respectively. The broad absorption from 3150 to 3450 cm−1,
representing the stretching of secondary OH groups, suggested that the ring-opening
thermal polymerization of the epoxy led to isocyanurate (Scheme 2b), oxazolidinone
(Scheme 2c), and triazine (Scheme 2b) units, characterized by signals at 1737, 1700, 1613,
1507, 1358, and 1227 cm−1 arising from the BADCy units. Scheme 2 presents a possible
mechanism for the thermal polymerization of the epoxy/BADCy blend [21,22].
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Figure 2. First-heating-scan DSC thermograms and FTIR spectral analyses of epoxy/BADCy hybrids
measured before and after thermal polymerization at 210, 240, and 270 ◦C: (a,c) without a catalyst,
and (b,d) with a Cu(II)-acac catalyst.

Scheme 2. Ring-opening reactions of epoxy with triazine rings to form isocyanurateamine, oxazolidi-
none, and oxazoline functional groups of (a) the chemical structure of DGEBA type of epoxy resin,
(b) triazine react with epoxy resin to form cyanurate and isocyannurate, and (c) isocyannurate react
with epoxy resin to form oxazolidinone and oxazoline.

Figure 3a,b displays the TGA analyses of epoxy/BADCy hybrids (weight ratio, 1/1) in
the absence and presence of Cu(II)-acac, recorded before and after thermal polymerization
at various temperatures. The values of the thermal decomposition of 10 wt% (Td10) and the
char yield both increased after applying the various thermal polymerization temperatures,
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which is consistent with the formation of crosslinked structures in the epoxy/BADCy
hybrids to enhance the thermal properties. Increasing the thermal polymerization tempera-
ture led to increases in the values of Td10 and the char yield in both cases [with and without
Cu(II)-acac] as a result of the O-C≡N units forming triazine structures, as displayed in
Schemes 1 and 2. The presence of triazine structures minimized the decomposition of
the organic material because they prevented contact with oxygen and the formation of
carbon residue. For example, the values of Td10 and the char yield increased from 378 to
386 ◦C and from 17.5 to 21.5 wt%, respectively, for the epoxy/BADCy hybrid, and from
327 to 362 ◦C and from 11.2 and 18.5 wt%, respectively, for the epoxy/BADCy/Cu(II)-
acac hybrid after thermal polymerization. The values of Td10 and the char yield of the
epoxy/BADCy/Cu(acac)2 hybrid system were lower than those of the epoxy/BADCy
hybrid; therefore, the catalyst decreased the thermal polymerization temperature but
also decreased the crosslinking density and degree of post-hardening during the thermal
polymerization procedure.

Figure 3. TGA traces of epoxy/BADCy hybrids in (a) the absence and (b) the presence of Cu(II)-acac,
recorded before and after thermal polymerization at 210, 240, and 270 ◦C.

2.3. Thermal Polymerization of Epoxy/DDSQ-OCN Hybrids

Figure 4a presents the synthesis of the DDSQ-OCN monomer from DDSQ-4OH
through a substitution reaction; the FTIR spectra in Figure 4b confirmed its structure,
as we have discussed previously [43,47]. For example, the spectrum of the DDSQ deriva-
tive featured a weak signal for the Si–CH3 units at 1261 cm−1, and a strong signal at
1097 cm−1 for the Si–O–Si units; the signals for the C=O groups of DDSQ-4OH were located
at 1709 and 1772 cm−1, with a broad signal centered at 3420 cm−1 representing the phenolic
OH units. When the substitution reaction was complete, the spectrum of DDSQ-OCN
featured signals at 2201, 2239, and 2277 cm−1 for the O-C≡N units, which were similar to
those of the BADCy monomer in Figure 1b. Figure 4c displays the DSC thermograms of
various epoxy/DDSQ-OCN/Cu(II)-acac and epoxy/DDSQ-OCN hybrids, recorded at a
heating rate of 20 ◦C min−1. Upon increasing the amount of epoxy resin in the DDSQ-OCN
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monomer, the thermal polymerization temperature decreased, again indicating that the
epoxy units themselves could catalyze the cyclotrimerization of the O-C≡N units, this
time for the DDSQ-OCN monomer. For example, the thermal polymerization peak ap-
peared at 192 ◦C for the epoxy/DDSQ-OCN = 1/1 hybrid; this peak shifted significantly
to 158 ◦C for the epoxy/DDSQ-OCN = 7/1 hybrid. Furthermore, the values of Td10 and
the char yield also decreased significantly, from 408 ◦C and 44.8 wt%, respectively, for
the epoxy/DDSQ-OCN = 1/1 hybrid, and to 299 ◦C and 15.5 wt%, respectively, for the
epoxy/DDSQ-OCN = 7/1 hybrid, with the inorganic DDSQ nanomaterial improving these
thermal properties through its nano-reinforcement effect.

Figure 4. (a) Synthesis of the DDSQ-OCN monomer from DDSQ-4OH, and (b) the corresponding
FTIR spectra. (c) First-heating-scan DSC thermograms and (d) TGA analyses of various epoxy/
DDSQ-OCN hybrids.

Figure 5a–c presents DSC traces of epoxy/DDSS-OCN/Cu(II)-acac hybrids with
various epoxy/DDSQ-OCN ratios, recorded before and after each thermal polymerization
procedure. As mentioned above, increasing the content of epoxy resin shifted the thermal
polymerization peak from 192 to 180 ◦C. Furthermore, the main thermal polymerization
peaks at 180–192 ◦C vanished when the thermal polymerization temperature was 210 ◦C,
but a broad exothermic peak was evident after thermal polymerization at 220 ◦C, indicating
that the partially crosslinked structure inhibited the ring opening of the epoxy units and
the cyclotrimerization of the O-C≡N units. Figure 5d displays the FTIR spectra of these
hybrids, measured before and after thermal polymerization at 210, 240, and 270 ◦C. The
spectrum of the epoxy resin featured an absorption peak at 914 cm−1, while that of DDSQ-
OCN displayed signals for the O-C≡N units at 2201, 2239, and 2277 cm−1; both sets of
signals disappeared after thermal polymerization at each temperature. Furthermore, a
strong, broad signal for OH stretching appeared at 3100–3450 cm−1, indicating that the ring
opening of the epoxy had occurred, with signals for isocyanurateamine, oxazolidinone,
and triazine units appearing at 1753, 1703, 1614, 1505, 1362, and 1251 cm−1, arising from
the O-C≡N units. In addition, the signal for the Si–O–Si units of the epoxy/DDSS-OCN
hybrid at 1092 cm−1 shifted to 1103 cm−1 after thermal polymerization, suggesting that the
OH units of the epoxy resin formed hydrogen bonds with the Si–O–Si units of the DDSQ
cage [41]. We observed this phenomenon widely in earlier studies of hydrogen bonding in
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POSS nanomaterials [41,48]; here, we suspected that these secondary interactions would
enhance the thermal and mechanical properties of the polymeric matrix.

Figure 5. First-heating-scan DSC analyses of epoxy/DDSQ-OCN: (a) 1/1, (b) 3/1, and (c) 5/1 hybrids
in the presence of Cu(II)-acac. (d) FTIR spectra of the epoxy/ DDSQ-OCN = 1/1 hybrid, recorded
before and after thermal curing at 210, 240, and 270 ◦C.

2.4. Thermal and Mechanical Properties of Epoxy/DDSQ-OCN Hybrids

Figures 6 and 7 present the TGA traces of various epoxy/DDSQ-OCN hybrids, in the
absence and presence of Cu(II)-acac, recorded before and after thermal polymerization
at each temperature, respectively. The values of Td10 and the char yield both increased
after applying the various thermal polymerization temperatures, which is consistent with
a crosslinking structure of DDSQ-OCN having formed in the epoxy matrix, thereby en-
hancing the thermal properties, similarly to the behavior of the epoxy/BADCy systems.
Furthermore, the values of Td10 and the char yield of the epoxy/DDSQ-OCN/Cu(acac)2
hybrids were lower than those of the epoxy/DDSQ-OCN hybrid; again, this behavior is
similar to that of the epoxy/BADCy systems, with decreases in the crosslinking density and
the degree of post-hardening occurring during thermal polymerization. All of the values
of Td10 and the char yield of the various epoxy/DDSQ-OCN hybrids, in the presence and
absence of Cu(II)-acac, are summarized in Figure 8.
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Figure 6. TGA traces of pure epoxy and epoxy/DDSQ-OCN: (a) 1/1, (b) 3/1, (c) 5/1, and (d) 7/1
hybrids, recorded after thermal polymerization at various temperatures.

Figure 7. TGA traces of pure epoxy and epoxy/DDSQ-OCN: (a) 1/1, (b) 3/1, (c) 5/1, and (d) 7/1
hybrids with Cu(II)-acac, recorded after thermal polymerization at various temperatures.
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Figure 8. Values of Td10 and the char yields of epoxy/DDSQ-OCN hybrids in (a,c) the absence and
(b,d) the presence of Cu(II)-acac, measured after thermal polymerization at various temperatures.

We found that increasing the concentration of DDSQ-OCN in both the epoxy/DDSQ-
OCN and epoxy/DDSQ-OCN/Cu(acac)2 hybrids caused the thermal stability to increase.
Furthermore, the thermal stability of the epoxy/DDQQ-OCN hybrids was greater than
that of the epoxy/BADCy hybrids because the inorganic DDSQ cages exerted a nano-
reinforcement effect; in addition, the epoxy resin presumably formed hydrogen bonds with
the DDSQ cages. For example, the values of Td10 and the char yield of epoxy/DDSQ-OCN =
1/1 were 427 ◦C and 51.0 wt%, respectively; these values are much higher than those (386 ◦C
and 21.5 wt%, respectively) of epoxy/BADCy = 1/1 after thermal polymerization at 270 ◦C
in the absence of Cu(II)-acac. Figure 9 compares the TGA traces of the epoxy/BADCy
and epoxy/DDSQ-OCN hybrids after thermal polymerization at 270 ◦C and sitting at
250 ◦C for various periods of time. We conclude that the presence of the inorganic DDSQ
particles in the cyanate ester region improved the thermal stability, with the char yield of the
epoxy/DDSQ-OCN = 1/1 hybrid (93.1 wt%) being greater than that of the epoxy/BADCy
= 1/1 hybrid (82.8 wt%) after 24 h at 250 ◦C.
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Figure 9. TGA profiles of epoxy/BADCy and epoxy/DDSQ-OCN = 1/1 after thermal polymerization
at 270 ◦C and then retaining at 250 ◦C for 1 day.

Figure 10 displays the results of the dynamic mechanical analysis (DMA) of the
epoxy/BADCy = 5/1 and various epoxy/DDSQ-OCN hybrids after thermal polymer-
ization at 270 ◦C, implying their loss, tan δ, corresponding to the Tg value and storage
modulus (E′) due to the mechanical property. The initial storage modulus of epoxy/BADCy
= 5/1 at 25 ◦C was 11,608 MPa, with a value of Tg of 162 ◦C. The epoxy/DDSQ-OCN =
5/1 hybrid exhibited lower initial values of E′ and Tg (2093 MPa and 97 ◦C, respectively),
presumably because the molecular weight (Mw) of DDSQ-OCN (1713 g/mol) was approx-
imately six times that of BADCy (278 g/mol), and thus the molar ratio of DDSQ-OCN
relative to epoxy was lower than that of BADCy at the same weight ratio. As a result, the
poorer mechanical properties and lower value of Tg arose because of a lower crosslink-
ing density in the epoxy/DDSQ-OCN hybrid at the same weight ratio, compared with
that in the epoxy/BADCy hybrid. Further increasing the concentration of DDSQ-OCN
in the epoxy resin caused the values of E′ and Tg to increase to 11,110 MPa and 105 ◦C,
respectively, for epoxy/DDSQ-OCN = 3/1, and to 12,410 MPa and 166 ◦C, respectively,
for epoxy/DDSQ-OCN = 1/1, due to the rigid inorganic DDSQ nanoparticles enhanc-
ing the nano-reinforcement effect, while also increasing the crosslinking of the structure
and decreasing the mobility of the epoxy resin. Comparing the epoxy/BADCy= 5/1 and
epoxy/DDSQ-OCN = 1/1 hybrids with similar molar ratios of their cyanate ester functional
units, the presence of DDSQ-OCN appeared to provide superior mechanical properties
and values of Tg when compared with the effects of BADCy; thus, incorporating the cubic
DDSQ cages could indeed improve the thermal and mechanical properties.
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Figure 10. DMA thermal analyses of (a) epoxy/BADCy = 5/1 and (b) epoxy/DDSQ-OCN = 5/1,
(c) 3/1, and (d) 1/1 hybrids, recorded after thermal polymerization at 270 ◦C.

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
revealed the dispersion of inorganic DDSQ-OCN cages in the epoxy resin. Figure 11a,b
display SEM and TEM images, respectively, of the epoxy/DDSQ-OCN = 1/1 hybrid after
thermal polymerization at 270 ◦C. Both images reveal a featureless morphology without
macro-phase separation, indicating that the inorganic DDSQ nanoparticles were dispersed
uniformly in the epoxy matrix. Furthermore, Si and C mapping, as well as N and O
mapping, based on SEM analyses, also revealed the homogeneous dispersion of DDSQ
cages on the surface of the epoxy resin. Moreover, the blue points for the Si mapping in
Figure 11c indicate DDSQ-rich domains, again suggesting highly dispersed cubic DDSQ
cages in the epoxy matrix that inhibited chain mobility, thereby improving the thermal
properties. This result is consistent with our TGA and DMA thermal analyses. Thus,
the inorganic nanoparticles themselves had an effect, as did the intermolecular hydrogen
bonding between the epoxy and DDSQ cage structures after thermal polymerization, as
revealed through FTIR spectral analyses.

Figure 11. (a) SEM and (b) TEM images of the epoxy/DDSQ-OCN = 1/1 hybrid. (c) Si, (d) C, (e) N,
and (f) O mapping of the SEM images after thermal polymerization.

3. Experimental Section
3.1. Materials

The bisphenol A, tetrahydrofuran (THF), and Cu(II) 2,4-pentanedionate (Cu(II)-acac)
were purchased from Alfa–Aesar. The triethylamine, cyanogen bromide (BrCN), methanol
(MeOH), and cyclohexane were purchased from Sigma–Aldrich. The DDSQ-OCN was syn-
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thesized as described previously [47]. The epoxy resin (DGEBA, DER 331) was purchased
from Dow Chemical (Midland, MI, USA), with an EEW of 190 g/eq.

3.2. Bisphenol A Cyanate Ester (BADCy)

Bisphenol A (5.00 g, 21.9 mmol) and BrCN (4.86 g, 46.0 mmol) were placed in a flask
under a blanket of N2. THF (100 mL) was added slowly while stirring rapidly. The solution
was cooled to −25 ◦C, and then triethylamine (3.41 mL) was added slowly over 30 min.
The temperature was stabilized at −30 ◦C by immersion in a Dewar flask containing a
MeOH/liquid N2 mixture. The reaction was complete after 4 h. The white salt was filtered
off. Ice water (500 mL) was added to the filtrate to form a white precipitate. This crude
product was recrystallized from cyclohexane to obtain a white powder (3.84 g; yield: 63%).

3.3. Epoxy/BADCy and Epoxy/DDSQ-OCN Hybrids

Various epoxy/BADCy and epoxy/DDSQ-OCN hybrids, in the presence and absence
Cu(II)-acac (0.01 wt%), were stirred for 48 h at 60 ◦C under a vacuum. Each casting sample
was placed into an aluminum tray and subjected to thermal polymerization at 210, 240, or
270 ◦C for 2 h. The epoxy hybrids were obtained with a dark brown color.

4. Conclusions

We prepared BADCy and DDSQ-OCN cyanate monomers through the substitution
of the phenolic functional groups of BPA and DDSQ-4OH with BrCN. The char yield and
value of Td of the DDSQ-OCN monomer were higher than those of the typical BADCy
monomer (without DDSQ cages) after thermal polymerization, because the inorganic DDSQ
cages enhanced the thermal behavior through a nano-reinforcement effect. SEM and TEM
images revealed that the inorganic DDSQ-OCN cages were dispersed homogeneously in
the resulting epoxy resins. Therefore, the values of Tg and Td and the storage modulus
of these epoxy/DDSQ hybrids all increased significantly as a result of restricted chain
mobility, which arose from hydrogen bonding between the OH units of the epoxy resin
(after thermal polymerization) and the SiOSi units of the DDSQ cages (based on FTIR
spectroscopy), as well as covalent bonding after the copolymerization of the epoxy and
cyanate ester units. The values of Tg and Td for the epoxy/DDSQ-OCN = 1/1 hybrid,
prepared without Cu(II)-acac as a catalyst (166 and 427 ◦C, respectively, based on DMA and
TGA) were significantly higher than those obtained when adding typical organic curing
agents to DGEBA-type epoxy resin, because of the effect of the rigid inorganic DDSQ cage
nanomaterials.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27185938/s1. Figure S1: 1H NMR analysis of BPA and
BADCy monomers. Figure S2: DSC analysis of the pure BADCy monomer.
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