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A pyridinyl-phenanzine conjugated microporous polymer decorated with 
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A B S T R A C T   

In this study we used classical Suzuki polycondensation to prepare a pyridinyl-phenanzine (TPPQP) conjugated 
microporous polymer (CMP) that featured a spherical morphology with a large surface area (371 m2 g− 1) and 
high thermal stability (Td10 = 625 ◦C; char yield = 81.7 wt%). The framework of the TPPQP CMP presented 
many dynamic pyridinic units could capture Ag+ ions from solution and facilitate their self-reduction to Ag 
nanoparticles, thereby forming Ag@TPPQP CMP nanocatalysts. The Ag@TPPQP CMP nanocatalysts were strong 
reducing agents for pollutant nitrophenols, converting them into safe amino forms at standard temperature and 
pressure with a high normalized rate of 19.4 mg− 1 s− 1. The pyridinic units in the TPPQP CMP structure played an 
important role in the catalytic reaction, interacting with the phenolic OH groups of p-nitrophenol to accelerate 
the reduction.   

1. Introduction 

Nitroaromatic materials are hydrocarbon pollutants of high toxicity 
and carcinogenicity, leading to greater calls for their disposal [1–6]. The 
accumulation of para-nitrophenol (p-NP) through the food chain and its 
prevalence in the nervous system can result in liver and kidney failure 
and other mortal diseases [7,8]. Although the dye and herbicide in-
dustries produce massive quantities of p-NP, the Environmental Pro-
tection Agency (EPA) has graded p-NP as a highly hazardous 
contaminant and has limited its ultimate concentration to 10 parts per 
billion in potable water [9–11]. Bacterial remediation [12], 
microwave-assisted catalytic oxidation [13], electrochemical oxidation 
[14], gamma irradiation [15], catalytic ozonation [16], photocatalytic 
oxidation [17], and reduction have all been suggested for the disposal of 
p-NP, but some of these processes have considerable defects. For 
example, bacterial remediation is limited at low concentrations of p-NP 
(<200 mg L− 1), with every kind of nitroaromatic compound requiring a 
different kind of bacteria. The high operational costs of 
microwave-assisted catalytic oxidation and electrochemical oxidation 
process limit their engineering applications. The applications of elec-
tricity and gamma irradiation can be unsafe. Although heterogeneous 

catalytic ozonation can effectively degrade nitroaromatic compounds, 
this process can display instability and unsustainability during consec-
utive runs. Finally, the photocatalytic oxidation of p-NP is limited at very 
low concentrations (<20 mg L− 1). 

Practically, processes for the reduction of p-NP have been most 
applicable because of their low energy requirements, economy, effec-
tiveness, safety, and ease of operation [6,18,19]. Nevertheless, in-
dustries that use p-NP are still requiring procedures with higher 
reduction rates [5]. Realistically, the reduction of p-NP will remain a 
pivotal reaction for disposing of this toxic compound; furthermore, the 
product of this reaction, para-aminophenol (p-AP), is a highly useful 
industrial molecule [20,21] for various applications, including dyes 
[22], drugs [23], photography [24], and anti-corrosion materials [25], 
and as an optoelectronic material for polybenzoxazine, phenolic resin, 
and poly(cyanate ester) [26–29]. Although the reduction of p-NP is 
economical, a small amount of energy (to obtain the requisite temper-
ature or H2 pressure) must be consumed to accelerate the rate of 
reduction. Alternatively, the rate of reduction might be accelerated by 
lowering the kinetic barrier of the reducing agent toward its electron 
acceptor. Indeed, various noble metals (Pd, Pt, Ru, Au, Ag) are useful 
catalysts for these kinds of reduction reactions, albeit generally 
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expensive [18,30,31]. For this present study we wished to choose a 
lower-cost metal that operates through a simple reduction pathway from 
its corresponding ion solution, ultimately settling on Ag [32,33], which 
is relatively abundant, inexpensive, electrically active, and thermally 
stable when compared with other noble metals [32,34,35]. Because Ag 
nanoparticles (NPs) tend to agglomerate readily, they are often 
anchored onto various carriers, including carbonaceous materials, silica 
substrates, magnetite, and covalent organic frameworks (COFs) to 
restrict their assembly [36,37]; therefore, we wished to develop a suit-
able surface for their attachment. 

In the last decade, porous organic polymers featuring a broad range 
of networks, including COFs, covalent triazine frameworks, hyper-
crosslinked polymers, porous aromatic frameworks, and conjugated 
microporous polymers (CMPs), have garnered attention for their use in 
various technologies [38–49]. Cao et al. [36] reported that CMPs sta-
bilized the uptake of ultrafine Ag NPs and prevented them from 
agglomeration. Indeed, CMPs have been prominent among the porous 
materials because of their π-conjugated frameworks and microporous 
structures [42,50–52]. Moreover, the extensive range of potential 
building subunits of CMP frameworks has led to their high applicability 
in such fields as gas adsorption [53], photo redox catalysis [54,55], 
energy storage [56–58], biology [59], energy production [50,60,61], 
and heterogeneous catalysis [62,63]. For example, Cao et al. [36] 
decorated a cyano-pyridyl CMP with Ag NPs, but observed only a low 
rate of catalytic reduction of p-NP (1.84 mmol s− 1). Furthermore, Gong 
et al. [64] prepared a CMP featuring carbazole (CZ) and 1,3,5-triethy-
nylbenzene (TEB) units (CZ-TEB CMP), decorated it with Ag NPs, and 
then employed the decorated Ag@CZ-TEB CMP for the reduction of 
p-NP; here, they used harmful NaBH4 as the reducing agent to deposit 
the Ag NPs onto the CZ-TEB CMP. To improve the rate of reduction of 
p-NP, in this study we sought a more suitable CMP for decoration with 
Ag NPs without using harmful reducing agents. Accordingly, we 
designed a new CMP featuring a large number of pyridyl units. Liu et al. 
[65,66] had previously synthesized planar polymers based on 3,6,14, 
17-tetrabromodibenzo[a,c]-dibenzo[5,6:7,8]quinoxalino-[2,3-i]- phen-
azine (3-TBQP) for energy storage applications. We suspected that the 
3-TBQP monomer, which offers many pyridinic units per molecule, 
might display high performance toward capturing Ag+ ions. 

Here, we designed a new two-dimensional CMP (TPPQP) using the 
boron ester 2,4,6-tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) 
phenyl)pyridine (TPP-3Bpin) and 3-TBQP. We fabricated the TPPQP 
CMP through Suzuki polycondensation of these monomers under sol-
vothermal conditions. The TPPQP CMP possessed a high surface area; 
furthermore, decoration of TPPQP CMP with Ag NPs was possible 
through a simple, inexpensive, and eco-friendly one-step reaction—in 
contrast to many other approaches that have depended on using harmful 
traditional reducing agents (e.g., hydrazine and NaBH4) [64,67,68] or 
microwave assistance [69] for producing Ag NPs. Inductively coupled 
plasma (ICP) spectroscopy revealed the weight percentages of the 
decorated Ag NPs on the TPPQP CMP after soaking in solutions con-
taining various concentrations of silver nitrate (AgNO3). The alkaline 
pyridyl groups present in the Ag@TPPQP CMP nanocatalyst enhanced 
the kinetics of the reduction of p-NP through interactions with the 
phenolic OH group. 

2. Experimental 

2.1. TPP-3Br 

Using a previously published procedure [39], a mixture of 4-bromoa-
cetophenone (4.14 g, 20.8 mmol), ammonium acetate (28.0 g, 363 
mmol), and acetic acid (14.6 mL, 0.260 mmol) was continuously stirred 
and then placed in a 20-mL microwave flask. Under self-generated 
pressure at 500 W, the reaction mixture was heated at 220 ◦C for 45 
min. The container was cooled to ambient temperature under a flow of 
water and then small amounts of NaHCO3 were added until the 

suspension had been neutralized. The precipitate was extracted into 
CH2Cl2. The solvent was evaporated, and the product recrystallized from 
acetone (Scheme S1). FTIR (powder): 1644, 1596, 1483, 813 cm− 1 

(Fig. S1). 1H NMR (CDCl3, 25 ◦C, 600 MHz, ppm): δ 8.037 (d, 4H), 7.8 (s, 
2H), 7.647 (d, 2H), 7.65 (d, 4H), 7.58 (d, 2H). 13C NMR (CDCl3, 25 ◦C, 
500 MHz, ppm): δ 156.5, 149.5, 137.84, 137.28, 132.28, 131.82, 128.5, 
123.9, 123.5, 116.73. 

2.2. TPP-3Bpin 

As displayed in Scheme S2, TPP-3Br was subjected to boronation to 
obtain TPP-3Bpin. TPP-3Br (1.20 g, 2.20 mmol) and bis(pinacolato) 
diboron (2.57 g, 10.1 mmol) were placed in a two-neck flask. [1,1′-Bis 
(diphenylphosphino)ferrocene]dichloropalladium(II) (0.142 g, 0.193 
mmol) and potassium acetate (0.900 g, 9.15 mmol) were added and then 
the flask was subjected to degassing for 15 min. Under continuous 
magnetic stirring, dioxane (50 mL) was injected into flask, which was 
then left at 110 ◦C for 2 days. The solid was filtered off, and washed 
several times with water and MeOH, and then purified chromato-
graphically (SiO2; THF/hexane, 1:3). Vacuum rotary evaporation of the 
eluent gave a white precipitate, which was dispersed in MeOH for 24 h. 
The product was filtered off and dried at 50 ◦C for 10 h. FTIR (powder): 
2977, 1600, 1614, 1399, 1212, 1141 cm− 1 (Fig. S1). 1H NMR (CD3Cl, 
25 ◦C, 400 MHz, ppm): δ 8.2 (d, 4H), 7.9 (d, 2H), 7.93 (s, 2H), 7.75 (d, 
4H), 1.37 (s, 12H) (Fig. S3). 13C NMR (CDCl3, 25 ◦C, 500 MHz, ppm): δ 
158.4, 150.6, 142.2, 136.1, 127.7, 118.4, 84.79, 24.69 (Fig. S4). 

2.3. 3-TBQP 

3-TBQP was synthesized (Scheme S3) according to a previously re-
ported procedure [65]. 3,6-Diibromophenanthrene-9,10-dione (3, 
6-DBPD; 0.760 g, 2.10 mmol) and benzene-1,2,4,5-tetraamine tetrahy-
drochloride (0.280 g, 1.00 mmol) were mixed in a 100-mL round-bottom 
two-neck flask under magnetic stirring. EtOH (6 mL) and acetic acid (20 
mL) were added and then the mixture was heated at 100 ◦C. The flask 
was kept under a N2 atmosphere, followed by the injection of triethyl-
amine (1.0 mL), resulting in a red color appearing immediately. The 
mixture was heated under reflux at 130 ◦C for 6 h. The product was 
filtrated and dried at 80 ◦C for 12 h. FTIR (powder): 1698, 1578, 1488, 
820 cm− 1 (Fig. S2). 

2.4. TPPQP CMP 

The TPPQP CMP was prepared as presented in Scheme 1. TPP-Bpin 
(200 mg, 4.00 mmol) was added to 3-TBQP (174.7 mg, 3 mmol) and 
tetrakis(triphenylphosphine)palladium [Pd(PPh3)4; 50 mg, 0.30 mmol] 
in a Schlenk tube. Potassium carbonate (303 mg, 30.0 mmol) was added 
and then the contents were degassed for 15 min. The co-solvents DMF 
(10 mL) and water (1.25 mL) were injected into the tube. The mixture 
was subjected to three freeze/pump/thaw cycles and then heated at 
140 ◦C for 72 h under a N2 atmosphere with continuous magnetic stir-
ring. The reddish-brown precipitate was filtered off, washed several 
times with water, washed again in a Soxhlet system using MeOH and 
hexane, then dried at 80 ◦C for 24 h. FTIR (powder): 1730, 1632 cm− 1 

(Fig. 1a). 

2.5. Ag@TPPQP CMP nanocatalyst 

A series of AgNO3 solutions was prepared with concentrations of 0.1, 
0.3, and 0.5 mmol L− 1. The TPPQP CMP (10 mg) was soaked in the 
individual solutions of AgNO3 (10 mL). The mixtures were stirred 
magnetically for 24 h. The three composites were separated through 
centrifugation, washed with water, and then dried at 50 ◦C, yielding the 
samples xAg@TPPQP CMP (x = 1, 3, 5). ICP spectroscopy revealed that 
Ag contents in the 1Ag@TPPQP, 3Ag@TPPQP, and 5Ag@TPPQP CMPs 
were 0.232, 0.336, and 0.482 wt%, respectively. FTIR (powder): 1735, 
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1638 cm− 1 (Fig. 1a). 

2.6. Ag@TPPQP CMP–mediated reduction of p-NP to p-AP 

p-NP (2.0 mL, 0.16 mM) and NaBH4 (0.5 mL, 0.08 M) were mixed in a 
quartz macro-cuvette, then an xAg@TPPQP CMP nanocatalyst (0.5 mL, 
1 mg/mL) was added. The same concentration of p-NP was used for the 
three samples of Ag NPs loaded onto the TPPQP CMPs. The progress of 
the reactions was followed using a UV–Vis spectrophotometer. 

2.7. Recovery of Ag@TPPQP nanocatalyst 

To determine the recovery, the quantities of the materials were 
increased sevenfold. The 1Ag@TPPQP CMP nanocatalyst was subjected 
to five runs; it was separated (centrifugation) and washed (water and 
EtOH) after each cycle to avoid nanocatalyst loss, then dried prior to the 
next cycle. 

3. Results and discussion 

We prepared the TPPQP CMP through palladium-catalyzed Suzuki 
polycondensation of TPP-3Bpin with 3-TBQP (Scheme 1). We expected 
that the pyridyl units of the TPPQP CMP, present in both of its subunits, 

would behave as active sites for the capture of Ag+ ions and their sub-
sequent reduction to Ag NPs. Furthermore, we expected that the pyridyl 
units would also improve the rate of reduction of p-NP through in-
teractions with the phenolic OH units. We used three different concen-
trations of AgNO3 (0.1, 0.3, and 0.5 mM) to prepare the nanocatalysts 
denoted xAgTPPQP CMP (x = 1, 3, 5). 

3.1. Characterization of TPP-3Bpin and 3-TBQP monomers 

TPP-3Bpin was synthesized from previously reported TPP-3Br, as 
presented in Schemes S1 and S2. We characterized TPP-3Br and TPP- 
3Bpin using FTIR spectroscopy; both monomers provided vibrational 
signals for C–H, C––N, and C––C bonds at 2977, 1600, and 1399 cm− 1, 
respectively (Fig. S1). Furthermore, the spectrum of TPP-3Bpin featured 
signals for stretching vibrations of C–H aromatic, C–N, B–O, C–B, and 
C–O bonds at 2977, 1600, 1399, 1212, and 1141 cm− 1, respectively 
Fig. S2 displays the 1H NMR spectrum of TPP-3Bpin; signals for protons 
of the methyl groups, pyridyl ring, and substituents on the aromatic ring 
appear at 1.37, 7.69, and 8.20–7.75 ppm, respectively. The corre-
sponding 13C NMR spectrum of TPP-3Bpin (Fig. S3) features signals for 
the carbon nuclei in the methyl groups, boron ring, C––N unit, and aryl 
rings at 24.7, 84.5, and 158.4, respectively, with other peaks appearing 
at 151.0, 142.4, 127.1, and 118.2 ppm. These spectral data confirmed 

Scheme 1. Synthesis and chemical structures of (a) TPP-Bpin and 3-TBQP, (b) the TPPQP CMP, and (c) the Ag@TPPQP CMP.  
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the synthesis of TPP-3Bin. Scheme S3 displays the synthesis of the 
monomer 3-TBQP. Because the solubility of 3-TBQP in water and com-
mon solvents was poor, we used FTIR spectroscopy alone to characterize 
its chemical structure (Fig. S4). The spectrum featured signals for the 
stretching vibrations of C––N, C––C, and aryl units at 1698, 1578, and 
820 cm− 1, respectively, consistent with complete condensation and 
formation of 3-TBQP. 

3.2. Characterization of the TPPQP CMP 

We used FTIR spectroscopy to characterize the as-synthesized TPPQP 
CMP (Fig. 1a). The disappearance of the signals for the B–O, C–B, and 
C–O vibrations of TPP-Bpin indicated its complete consumption in the 
Suzuki reaction; signals for the stretching vibrations of the C––N and 
C––C bonds of the aryl rings at 1730 and 1632 cm− 1, respectively, were 
primary indicators of the formation of the TPPQP CMP (Fig. 1b). dis-
plays the solid state 13C NMR spectrum of the TPPQP CMP, with the 
signal at 156 ppm representing C––N units and the other broad signals at 
139.6–127.4 ppm representing acyl carbon nuclei. Field emission 
scanning electron microscopy (FE-SEM) revealed the spherical 
morphology of the TPPQP CMP (Fig. 2a). The interparticle structure of 
the TPPQP CMP was revealed using transmission electron microscopy 
(TEM) (Fig. 2c)], suggesting good dispersity of TPPQP CMP without 
considerable agglomeration. The thermal stability of the TPPQP CMP 
was high, as indicated by a decomposition temperature (Td10) of 625 ◦C; 
in addition, a char yield of 81.7 wt% was determined after heating to 
800 ◦C (Fig. S5). The high thermal stability of the TPPQP CMP suggested 
a high degree of condensation and high planarity. The microporosity of 
the TPPQP CMP was estimated through N2 adsorption at 77 K; according 
to IUPAC classification, it underwent type-I N2 gas sorption (Fig. 1c). We 

used the Brunauer–Emmett–Teller (BET) method to measure the surface 
area (371 m2 g− 1) and pore volume (0.5124 cm3 g− 1) of the TPPQP CMP. 
Furthermore, the pore size distribution of the TPPQP CMP, based on 
nonlocal density functional theory, featured multiple peaks near 1.13, 
1.84, and 4.87 nm (Fig. 1d, suggesting the presence of the microporous/ 
mesoporous structures. 

3.3. Characterization of Ag@TPPQP CMP nanocatalysts 

We employed a green decoration method, without any harmful 
reducing agents, to obtain the xAg@TPPQP CMP nanocatalysts. The Ag+

ions were captured by pyridyl groups spread throughout the TPPQP 
CMP; upon irradiation with visible light, these units facilitated the 
reduction of the Ag+ ions to give Ag NPs. Fig. 1a displays the FTIR 
spectra of the Ag@TPPQP CMPs; only slight shifts in the positions of the 
signals (from 1730 to 1735 cm− 1) occurred relative to that of the pristine 
TPPQP CMP. As expected, the BET surface area of the 1Ag@TPPQP CMP 
decreased to 67 m2 g− 1(Fig. 1c); the pore size distribution increased to 
1.83, 3.02, and 5.28 nm after decoration of the Ag NPs on the surface of 
the TPPQP CMP. Fig. 2b reveals the spherical morphology of the 
Ag@TPPQP CMP, based on FE-SEM imaging. Fig. 2(d)–(f) present cor-
responding TEM images, revealing good dispersity of the Ag NPs at 
various percentages on the surface of the TPPQP CMPs, without 
considerable aggregation, due to the high surface area and porosity of 
the TPPQP CMP. The Ag NPs at various concentrations on the TPPQP 
CMP were also examined using high-resolution TEM (HR-TEM) [Fig. 2 
(g)–(i)]; the interplanar distance between the strips, calculated from the 
lattice fringes of xAg@TPPQP CMP, was 0.24 nm, consistent with the 
lattice plane [111] of cubic Ag [70]. Furthermore, the TEM images 
provided statistical data for calculating the sizes of the Ag NPs, with 

Fig. 1. (a) FTIR spectra of the TPPQP CMP before and after decoration with Ag NPs. (b) Solid state 13C NMR spectrum of the TPPQP CMP. (c) N2 sorption isotherms 
recorded at 77 K. (d) Pore size distributions of the TPPQP CMP before and after anchoring Ag NPs. 
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average dimensions of approximately 2–3 nm for the 1Ag@TPPQP, 
3Ag@TPPQP, and 5Ag@TPPQP CMPs nanocatalysts [Fig. 2(j)–(l), 
respectively; 100 particles used to obtain the statistical data]. Further-
more, TEM visualization of bare TPPQP CMP (Fig. 2c) does not display 
any Pd nanoparticles confirming the negligible percentages of Pd res-
idue confirming the negligible influence of it within reduction process. 
These percentages of Ag loaded in 1Ag@TPPQP, 3Ag@TPPQP, and 
5Ag@TPPQP, calculated using ICP spectroscopy, were 0.232, 0.336, and 
0.482 wt% respectively; thus, a greater concentration of the AgNO3 
solution led to the production of more Ag NPs on the TPPQP CMP. The 
contents of C, N, and Ag atoms in the 1Ag@TPPQP CMP, measured using 
SEM-EDX, were 53.19, 46.34, and 0.47 wt%, respectively (Fig. S6, 
Table S1); this content of Ag matches that determined using ICP spec-
troscopy. Elemental mapping of the 1Ag@TPPQP CMP nanocatalyst 
revealed the dispersions of the C, N, and Ag atoms (Fig. S6). 

We used XPS to elucidate the surface components of the Ag@TPPQP 
CMP nanocatalysts. Fig. 3 displays the high-resolution XPS profiles for 
every element in our nanocatalysts. Two peaks appeared at 284.4 and 
285.8 eV [Fig. 3(a)–(c)] for the C–C––C and N–C––N units, respectively, 
in the 1Ag@TPPPQP, 3Ag@TPPQP, and 5AgTPPQP CMP nanocatalysts. 
Fig. 3(d)–(f) all feature a characteristic peak near 399.5 eV for the 
pyridinic nitrogen atoms in this series of nanocatalysts. The Ag atoms in 
the 1Ag@TPPQP, 3Ag@TPPQP, and 5Ag@TPPQP CMP nanocatalysts 
featured two characteristic binding energies of 368 eV (3d5/2) and 374 
eV (3d3/2), as revealed in Fig. 3(g)–(i), respectively. Table S2 summa-
rizes the results obtained from curve fitting of the signals of all of the 
elements in Fig. 3; we conclude that the different amounts of Ag NPs did 
not strongly affect the binding energies of any of the elements. 

3.4. Catalytic performance in the reduction of p-NP 

As mentioned above, nitrophenols are very important in many fields, 
but disposing of them in common degradation systems is not always easy 
because of their biological and chemical resistance; thus, reduction of 
nitrophenols to a safe form is necessary in our quest for sustainable 
chemistry [71]. Accordingly, we selected the reduction of p-NP as a 
model to examine the catalytic performance of our Ag@TPPQP CMP 
nanocatalysts. The Langmuir–Hinshelwood mechanism explains well 
the catalytic reaction of the reduction of p-NP in the presence of the 
Ag@TPPQP CMP nanocatalysts (Equations S1–S5). Briefly, the Ag NPs 
absorbed BH4

− ions; these ions adsorbed onto the surface of the nano-
catalysts formed activated H2, which underwent the hydrogenation of 
p-NP [72]. UV–Vis spectral profiles revealed the progress of the reduc-
tion of p-NP in the presence of NaBH4 and the Ag@TPPQP CMP nano-
catalysts. The transformation of the UV spectral signal from 316 to 400 
nm (Fig. 4a) upon addition of NaBH4 represents the conversion of p-NP 
to p-nitrophenolate. The catalytic performance of our TPPQP CMP 
(Fig. S8) was used as control comparing with Ag@TPPQP CMP nano-
catalyst, As displayed in Fig. S8, the characteristic band of p-NP at 400 
nm has not any noticeable decrease within reaction time, consequently 
the catalytic efficacy were attributed so Ag@TPPQP CMP nanocatalyst. 
After the addition of the xAg@TPPQP CMP nanocatalyst, the signal at a 
wavelength of 400 nm decreased gradually, accompanied by the 
appearance of a new peak at 310 nm, representing the produced p-AP 
[Fig. 4(b)–(d)]. In addition, the reduction of p-nitrophenolate could be 
followed through the vanishing of the deep-yellow solution to colorless 
during the reduction process [Fig. 4e]. Because of the excess 

Fig. 2. (a, b) FE-SEM images of the TPPQP CMP (a) before and (b) after decoration with 1 wt% Ag NPs. (c–f) TEM and (g–i) HR-TEM images and (j–l) diameter 
distributions of (c) the pure TPPQP CMP and (d, g, j) the 1 wt% of Ag@TPPQP CMP, (e, h, k) the 3 wt% of Ag@TPPQP CMP, and (f, i, l) the 5 wt% of Ag@TPPQP CMP 
nanocatalysts. 
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concentration of NaBH4, the reduction of p-NP to p-AP could be 
considered a reaction with pseudo-first-order kinetics, based on the 
equation  

ln(C/Co) = kapp × t                                                            (equation 1) 

Therefore, after plotting ln(C/Co) with respect to time, the slope 
revealed the kinetic rate of reduction. The rates of reduction when using 
0.5 mg of the 1Ag@TPPQP and 3Ag@TPPQP CMP nanocatalysts were 
0.0097 and 0.0181 s− 1, respectively [Fig. 4(f) and (g)]. The normalized 
rate constants (knor) of the 1Ag@TPPQP and 3Ag@TPPQP CMP nano-
catalysts were 19.4 and 36.2 mg− 1 s− 1, respectively. We could not 
calculate the rate of reduction of p-NP mediated by the 5Ag@TPPQP 
CMP nanocatalyst because the color of p-NP vanished too quickly [Fig. 4 
(d) and (h)]. The higher rates of reduction when using the 3Ag@TPPQP 
and 5Ag@TPPQP CMP nanocatalysts [Fig. 4(c) and (d)] were due to 
their higher loading percentages of Ag onto the TPPQP CMP [36,73]. 
Table S3 compares the efficacy of the 1Ag@TPPQP and 3Ag@TPPQP 
CMP nanocatalysts for the reduction of p-NP in the presence of NaBH4 at 
standard temperature and pressure (STP) with those of other reported 
Ag-supported catalysts, including CMP [36], mesoporous silica (KIT) 

[74], and polyaniline [75]; gratifyingly, our Ag@TPPQP CMP nano-
catalysts displayed the highest kinetic rates. 

We suspected that the high kinetic rates of reduction of p-NP resulted 
from interactions between the phenolic OH group of p-NP and the pyr-
idyl groups of the Ag@TPPQP CMP nanocatalysts [76]. Accordingly, we 
examined the reduction of p-FNB at the same ratios used for reduction of 
p-NP; we recorded a lower kinetic rate of 3 × 10− 3 s− 1 (Figs. S9–S10). 
The lower reduction performance toward p-FNB is consistent with the 
lower strength of the interactions between pyridyl groups and fluorine 
atoms [77]. This finding suggests a role for the pyridyl groups located on 
the TPPQP CMPs in the reduction of p-NP. Moreover, the 1Ag@TPPQP 
CMP nanocatalyst displayed high efficiency in the reduction of p-nitro-
aniline (p-NA) to p-aminoaniline (p-AA), as revealed in Fig. S11, with a 
high kinetic rate of 0.007 s− 1 as clarified in Fig. S12. 

3.5. Recovery of Ag@TPPQP CMPs 

The potential industrial use of the 1Ag@TPPQP CMP catalyst would 
be boosted by its high recovery. Accordingly, we tested the recovery of 
the 1Ag@TPPQP CMP nanocatalyst through five consecutive cycles of 

Fig. 3. High-resolution XPS spectra revealing the (a–c) C 1s, (d–f) N 1s, and (g–i) Ag 3d peaks for the (1, 3, and 5 wt%) Ag@TPPQP CMPs nanocatalysts.  
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the reduction of p-NP (Fig. 5a). The 1Ag@TPPQP CMP nanocatalyst 
provided an efficacy rate of 90% even after the fifth cycle, suggesting a 
minor decrease in catalytic activity through only a meager loss of the 
nanocatalyst during the recovery processes. The high reusability implied 

high chemical stability for the Ag@TPPQP CMP nanocatalyst. Further-
more, the FITR spectra of the Ag@TPPQP CMP nanocatalyst recorded 
before and after recycling were identical (Fig. 5b). In addition, the TEM 
image of the 1Ag@TPPQP CMP nanocatalyst confirmed the stability of 

Fig. 4. UV–Vis spectra revealing (a) the conversion of p-NP to p-nitrophenolate and (b–d) the reduction of p-NP to p-AP when using the 1Ag@TPPQP, 3Ag@TPPQP, 
and 5Ag@TPPQP CMPs, respectively. (e) Fading yellow color during the transformation of p-NP to p-AP. (f–h) Pseudo-first-order kinetics of the reduction of p-NP 
over the (f) 1Ag@TPPQP, (g) 3Ag@TPPQP, and (h) 5Ag@TPPQP CMPs. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 5. (a) Recycling of the 1Ag@TPPQP CMP nanocatalyst over five periods of reduction. (b) FTIR spectrum and (c) TEM image of the Ag@TPPQP CMP nanocatalyst 
after reuse. 
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the Ag NPs at the surface of the TPPQP CMP. All of these features suggest 
that Ag@TPPQP CMPs are promising nanocatalysts for the reduction of 
nitrophenols, and addition to identifying the TPPQP CMP as an excellent 
substrate for decoration with noble metals. 

4. Conclusions 

We have prepared a pyridyl-based CMP (TPPQP CMP) through 
traditional Suzuki coupling and characterized it using FTIR spectros-
copy, NMR spectroscopy, the BET method, TGA, SEM, and TEM. The 
pyridyl units of the TPPQP CMP facilitated the capture of Ag+ ions and 
their subsequent reduction into Ag NPs, thereby yielding Ag@TPPQP 
CMP nanocatalysts. The Ag@TPPQP CMPs appear to be highly suitable 
for disposing of priority pollutants, due to their excellent catalytic ac-
tivity toward the reduction of nitroaromatic compounds at STP. They 
provided high values of knor (up to 36.2 mg− 1 s− 1), due to the presence of 
many pyridyl groups that could interact with phenolic OH groups. 
Furthermore, the Ag@TPPQP CMPs displayed high recoveries without 
considerable losses of efficacy. 
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