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Herein, we describe two ferrocene-derived conjugated microporous polymers (FFC—CMPs) prepared
through Sonogashira couplings of 9-ferrocenylidene-2,7-dibromo-9H-fluorene (FFC) with tetraethynylpyr-
ene (Py-T) and tetrakis(4-ethynylphenyl)ethene (TPE-T), respectively, and their properties determined using
various spectroscopic techniques. These two FFC CMPs formed inclusion complexes (ICs) with a benzoxa-
zine-linked B-cyclodextrin (CD-BZ), with host-guest interactions occurring between the ferrocene and S-CD
units. We used Fourier transform infrared spectroscopy, X-ray diffraction, two-dimensional nuclear Over-
hauser enhancement NMR spectroscopy, solid-state '3C CP/MAS NMR spectroscopy, and thermogravimetric
analysis to characterize these FFC—CMP/CD-BZ ICs. The BZ units in the FFC—CMP/CD-BZ ICs underwent ther-
mal ring-opening polymerization to form new Mannich bridges featuring both intermolecular (OH.--O) and
intramolecular (OH---N) hydrogen bonds; the resulting TPE-FFC—CMP/poly(CD-BZ) and Py-FFC—CMP/poly
(CD-BZ) ICs exhibited outstanding thermal stability, with the latter having the higher CO, uptake ability
(1.42 mmol g~ ') and capacitance (46 Fg~'at0.5A g7 1).
Background: Host—guest complexes formed from macrocyclic hosts possessing hydrophobic cavities such as
cyclodextrins (CDs) and various guest molecules have been studied widely for their fascinating characteris-
tics. The interaction of ferrocene-containing CMPs with hydrophobic cavities of CDs to form inclusion com-
plexes materials with excellent thermal properties and these materials can be used in different fields
including energy storage and gas capture.
Methods: Two ferrocene-based fluorene CMPs—TPE-FFC CMP and Py-FFC—CMP—through Sonogashira cou-
plings of 9-ferrocenylidene-2,7-dibromo-9H-fluorene (FFC), as the main block, with tetraethynylpyrene (Py-
T) and tetrakis(4-ethynylphenyl)ethene (TPE-T), were successfully synthesized through Sonogashira cou-
plings. Then, the two FFC CMPs were attached to a benzoxazine-functionalized p-cyclodextrin (CD-BZ)
through host-guest complexation. The successful synthesis of two FFC CMPs and FFC—CMP/CD-BZ ICs was
investigated by using Fourier transform infrared spectroscopy, X-ray diffraction, two-dimensional nuclear
Overhauser enhancement NMR spectroscopy, solid-state '3C CP/MAS NMR spectroscopy, and thermogravi-
metric analysis.
Significant Findings: The present work offers a new and facile strategy for the preparation CMPs/CD inclusion
complexes through supramolecular chemistry and using these materials as an electrode in the energy devi-
ces and CO, uptake.

© 2021 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Conjugated microporous polymers (CMPs) are an emerging class
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batteries, hydrogen evolution, energy storage, fuel cells, sensors, pho-
tocatalysis, phototherapy, CO, adsorption, and optoelectronics
[1-18]. CMPs can be prepared—with a range of microporous mor-
phologies presenting various molecular structures of conjugated pol-
ymers—using a variety of synthetic methods, including Heck
reactions, Schiff-base formation, oxidative coupling, Sonogashira cou-
pling, cyclotrimerization, Yamamoto and Suzuki coupling [19-27].
The diversity of CMP structures leads to many having attractive prop-
erties, including high conductivities, mechanical rigidities, surface
areas, porosities, and thermal stabilities. Interestingly, solid-state
chemical transformations of CMPs have been performed without
changing their topologies significantly, typically through post-modi-
fication of the linkages of the CMPs. For example, imine-linked CMPs
have been converted to secondary amides, secondary amines, oxa-
zoles, thiazoles, and quinolones; as a result, amide- and oxazole-
linked CMPs can be synthesized from their building blocks directly
[28—-36]. In addition, cyclic carbamate- and thiocarbamate-linked
CMPs have been obtained from imine-linked CMPs through multistep
post-modifications in the solid state, retaining the high surface areas
(>780 m? g ') and long-range order of the crystalline and porous
structures of their precursors [37].

Benzoxazine (BZ) units undergo ring-opening polymerization
(ROP) to form polybenzoxazines (PBZs) featuring strong intramolecu-
lar (OH---N) and intermolecular (OH---O) hydrogen bonds, thereby
enhancing the thermal stabilities and dielectric constants [38—46]. In
previous studies, we synthesized porous organic polymers featuring
BZ-linkages through direct one-pot Mannich reactions and multi-
step syntheses using tetraphenylethylene (TPE) as the building block
[47,48]. We performed post-modifications of the linkages of these
CMPs through the formation of covalent bonds; to the best of our
knowledge, noncovalent bonding has not been reported previously
to introduce BZ-linkages into CMPs.

Supramolecular interactions are exploited in many different fields,
including catalysis, biochemistry, organic synthesis, and electronics.
They involve various types of intermolecular noncovalent bonding,
typically van der Waals interactions, metal coordination, hydrophobic
interactions and m-stacking [49—-52]. Host—guest complexes formed
from macrocyclic hosts possessing hydrophobic cavities [e.g., cyclo-
dextrins (CDs), calixarenes, and cyclophanes] and various guest mole-
cules have been studied widely for their fascinating characteristics [53,
54]. By allowing noncovalent interactions to exist between their com-
ponents, various supramolecular host-guest inclusion complexes (ICs)
can be formed in a facile manner for practical use. CDs are among the
most popular macrocyclic receptors used to introduce supramolecular
interactions; they are cyclic oligomers of o—1,4-p-glucopyranose, with
a-, -, and y-CD being most common, differentiated by their ring sizes.
The hydrophobic cavities of CDs interact with various guest molecules,
including azobenzene, polyethylene glycol, adamantane, and ferrocene
units, forming ICs [55,56]. B-CD has been the most widely used of the
CDs because of its commercial availability, unique structure, outstand-
ing biocompatibility, and facile chemical modification [55]. Ferrocene
units can be incorporated into the hydrophobic cavity of 8-CD through
supramolecular hydrophobic interactions, forming ICs of equal mole
ratio. For example, Yuan et al. prepared supramolecular graft copoly-
mers featuring host—guest interactions between SB-CD in the main
chain and ferrocene units and investigated their responsiveness for
electrochemical redox applications [57]. Guo et al. obtained amphi-
philic polymers from S-CD dextran and a ferrocene-terminated poly-
caprolactam, based on a host—guest strategy; they used cyclic
voltammetry (CV) and two-dimensional (2D) NMR spectroscopy to
confirm the presence of the ICs formed between the two units [58]. Ni
and coworkers fabricated a graft copolymer (Dex-B-CD/Fc-PLA)
through host—guest complexation of building blocks featuring ferro-
cene and B-CD moieties [59].

The introduction of organometallic compounds (in particular, fer-
rocene) in the skeletons of CMPs can lead to excellent electrical,

optical, sensing, catalytic, magnetic, thermal, and redox properties.
Indeed, ferrocene-containing CMPs have been used in various appli-
cations, including gas storage, lithium batteries, dye removal, cataly-
sis, magnetic switches, and memory devices [60—67]. For example,
Liu et al. used Yamamoto coupling to prepare two ferrocene-based
CMPs displaying good thermal stability and gas storage capacity [68].
Wong et al. synthesized ferrocene-based hyperbranched polymers
through Sonogashira coupling of 9-ferrocenylidene-2,7-diiodo-9H-
fluorene and tri(4-ethynylphenyl)amine; by controlling the morphol-
ogy of these synthesized polymers, they obtained nanostructures
suitable for use in water treatment and lithium-ion batteries [69].

In this study, we synthesized two ferrocene-based fluorene
CMPs—TPE-FFC CMP and Py-FFC—CMP—through Sonogashira cou-
plings of 9-ferrocenylidene-2,7-dibromo-9H-fluorene (FFC), as the
main block, with tetraethynylpyrene (Py-T) and tetrakis(4-ethynyl-
phenyl)ethene (TPE-T), respectively [Schemes 1(a) and 1(b)]. We
then attached the two FFC CMPs to a benzoxazine-functionalized
B-cyclodextrin (CD-BZ) [70] through host—guest complexation of the
B-CD and ferrocene moieties to form FFC/CD-BZ CMP ICs [Schemes 1
(c) and 1(d)]. The formation of the ICs between the FFC—CMPs and
B-CD was confirmed using 2D nuclear Overhauser enhancement (2D
NOESY) NMR spectroscopy. To the best of our knowledge, these
FFC—CMP/CD-BZ ICs are the first examples of CMPs possessing BZ
units introduced through host—guest interaction of FFC and B-CD
units; furthermore, these BZ units underwent ROP upon thermal
treatment, without the need for a catalyst or curing agent [52].

2. Experimental
2.1. Materials

Potassium hydroxide (KOH), triphenylphosphine (PPhs), and cop-
per iodide (Cul) were purchased from Alfa Aesar. Tetrakis(triphenyl-
phosphine)palladium(0)  [Pd(PPhs)4] was obtained from
Sigma-—Aldrich. Ethanol (EtOH), triethylamine (EtsN), and N,N-dime-
thylformamide (DMF), methanol (MeOH), tetrahydrofuran (THF), and
ferrocene carboxaldehyde were obtained from Acros. Tetrakis(4-bro-
mophenyl)ethylene (TPE-Brg), 1,3,6,8-tetrabromopyrene (Py-Bry),
2,7-dibromo-9H-fluorene (F-Br,), 1,3,6,8-tetraethynylpyrene (Py-T)
1,1,2,2-tetrakis(4-ethynylphenyl)ethene (TPE-T), FPy-CMP, and CD-
BZ (Scheme S2) were prepared using previously reported procedures
[1,16,48,70-74].

2.2. FTPE-CMP

A solution of PPhs (6.0 mg, 0.023 mmol), Pd(PPhs), (27 mg,
0.023 mmol), F-Br, (0.15 g, 0.46 mmol), TPE-T (0.10 g, 0.23 mmol),
and Cul (4.0 mg, 0.023 mmol) in dry DMF and Et3N (14 mL) was
degassed (using vacuum pump and N;) and then heated under reflux
at 110 °C (oil bath) for 3 days. The orange precipitate was filtered off,
washed thoroughly with DMF, MeOH, and THF, and then dried in an
oven for 2 days [Scheme S1(a)]. FTIR (KBr, cm™'): 3059 (aromatic
C-H stretching), 2191 (C=C stretching), 1601 (C=C stretching)
[Figure S1(a)].

2.3. FPy-CMP

A solution of Pd(PPhs), (27 mg, 0.023 mmol), F-Br, (0.15 g,
0.46 mmol), PPh; (6.0 mg, 0.023 mmol), Py-T (0.1 g, 0.23 mmol), and
Cul (4.0 mg, 0.023 mmol) in dry DMF and Et3N (14 mL) was degassed
(using a vacuum pump and N;) and then heated under reflux at 110 °
C (oil bath) for 3 days. The orange precipitate was filtered off, washed
thoroughly with DMF, MeOH, and THF, and then dried in an oven for
2 days [Scheme S1(b)]. FTIR (KBr, cm™!): 3059 (aromatic C—H stretch-
ing), 2191 (C= C stretching), 1601 (C=C stretching) [Figure S1(b)].
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2.4. 9-Ferrocenylidene-2,7-dibromo-9H-fluorene (FFC)

A mixture of F-Br; (0.80 g), KOH (0.27 g), and ferrocene carboxal-
dehyde (0.58 g) in EtOH (50 mL) was heated under reflux at 70 °C for
24 h. The red precipitate was washed with EtOH and dried in an oven
at 80 °C for 24 h (Scheme 1). FTIR (KBr, cm™!): 3095 (aromatic C—H
stretching). 'H NMR (500 MHz, CDCls, 8, ppm, Figure S2): 8.40, 7.88,
7.56, 7.56, 7.46, 4.72, 4.56, 4.26. >*C NMR (125 MHz, CDCls, 8, ppm,
Figure S3): 141.6, 138.4, 138.3, 135.9, 131, 130.5, 130.1, 129.7, 127,
122.8, 121, 120.9, 120.6, 80, 70.9, 70.6, 69.7. (+)ESI-MS: my/z 521
(Cy3H;6FeBr,) (Figure S4).

2.5. TPE-FFC—CMP

A solution of Cul (8.0 mg, 0.040 mmol), FFC (0.24 g, 0.46 mmol), Pd
(PPhs)s (50 mg, 0.045 mmol), TPE-T (0.10 g, 0.23 mmol), and PPhs
(12 mg, 0.050 mmol) in dry DMF and Et3N (14 mL) was degassed (using a
vacuum pump and N,) and then heated under reflux at 110 °C (il bath)
for 3 days. The brown solid was filtered off and washed thoroughly
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with DMF, MeOH, and THF. FTIR (KBr, cm~'): 3095 (aromatic C—H
stretching), 2197 (C=C stretching), 1628 (C=C stretching) [Fig. 1(b)].

2.6. Py-FFC—CMP

This CMP was prepared as a dark-red precipitate by using the pro-
cedure described above for TPE-FFC—CMP, but with the following
changes: PPhs (20 mg, 0.060 mmol), FFC (0.34 g, 0.66 mmol), Py-T
(0.10 g, 0.33 mmol), and Cul (0.01 g, 0.05 mmol). FTIR (KBr, cm™!):
3095 (aromatic C—H stretching), 2197 (C=C stretching), 1628 (C=C
stretching) [Fig. 1(c)].

2.7. CD-BZJFFC and FFC/cd-BZ CMP ICs and thermal curing
polymerization

CD-BZ (0.1 g) and FFC, Py-FFC—CMP, or TPE-FFC—CMP (0.05 g)
were placed in distilled water (10 mL) and then the mixture was son-
icated for 2 h and stirred for 12 h to form the CD-BZ/FFC and FFC/CD-
BZ CMP ICs, respectively. Each FFC/CD-BZ CMP IC (0.15 g) was then
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Scheme 1. Schematic representations of (a) Py-FFC—CMP, (b) TPE-FFC—CMP, (c) Py-FFC/CD-BZ CMP, (d) TPE-FFC/CD-BZ CMP, (e) Py-FFC/CD-BZ CMP after curing, and (f) TPE-FFC/

CD-BZ CMP after curing.



4 M.M. Samy et al. / Journal of the Taiwan Institute of Chemical Engineers 132 (2022) 104110

q)——¢b-BzZ b)—cb-Bz c) —¢b-BZ
( ) ——FFC ( ) —— TPE-FFC-CMP ( ) —— Py-FFC-CMP
—— FFC/CD-BZ Complex TPE-FFC/CD-BZ CMP —— Py-FFC/CD-BZ CMP
C-0-C C-0-C C-0-C
OH

OH

Absorbance (a.u.)

-C=C-

OH

Moisture g

I T T T T T T ! T T

4000 3000 2000 1000

T

T T T ! I T T T T T T !

I
4000 3000 2000 1000 4000 3000 2000 1000

Wavenumber (cm™)

Fig. 1. FTIR spectra of (a) CD-BZ, FFC, and the FFC/CD-BZ complex; (b) CD-BZ,TPE-FFC—CMP, and the TPE-FFC/CD-BZ CMP; and (c) CD-BZ, Py-FFC—CMP, and the Py-FFC/CD-BZ CMP.

cured at 300 °C for 4 h to afford the FFC/poly(CD-BZ) CMP as a dark-
brown solid.

3. Results and discussion
3.1. Synthesis of FFC monomer

The FFC monomer was prepared through condensation of F-Br;
and ferrocene carboxaldehyde in absolute EtOH in the presence of
KOH (Scheme 1). The chemical structure of the FFC monomer was
confirmed using conventional techniques (FTIR, 'H and 3C NMR, and
FTMS spectroscopy; Figures S2—S4). The FTIR spectrum [Fig. 1(a)] fea-
tured a peak at 1628 cm™~! representing C=C stretching, but no char-
acteristic peak for a carboxyl group, revealing that the condensation
of F-Br, and ferrocene carboxaldehyde had given the target FFC
monomer, isolated as a red solid. The '"H NMR spectrum of the FFC
monomer (Fig. S2) featured signals at 4.26, 4.56, and 4.72 ppm repre-
senting the Cp protons of the ferrocene moiety and at 7.46—7.88 and
8.40 ppm representing the aromatic and HC=C protons, respectively.

The 3C NMR spectrum of the FFC monomer (Figure S3) featured
peaks at 69.7, 70.6, 70.9, and 80.0 ppm representing the carbon nuclei
of the Cp units, as well as signals at 120.6—138.4 and 141.6 ppm rep-
resenting the carbon nuclei of the aromatic and HC=C units, respec-
tively. The molecular weight of the FFC monomer (m/z 521),
determined using (+)ESI mass spectrometry (Figure S4), was consis-
tent with its expected calculated value (520.7).

3.2. Synthesis of Py-FFC-CMP and TPE-FFC-CMP

The two ferrocene-based fluorene conjugated microporous poly-
mers (FFC—CMPs) were prepared through Sonogashira couplings of
the FFC monomer with Py-T and TPE-T, respectively, in DMF/EtsN
with Pd(PPhs)s as the catalyst [Schemes 1(a) and 1(b)]. The FTIR

spectra of these two CMPs featured peaks at 2197 cm™! for -C=C-
stretching and at 3095 cm~! for C—H aromatic vibrations [Fig. 1(b)
and 1(c)]. Fig. 2(b) and 2(d) present the solid-state '3C CP/MAS NMR
spectra of Py-FFC and TPE-FFC—CMPs with signal assignments. The
peaks in the range from 69.2 to 92 ppm represented the alkyne and
ferrocene units in both FFC—CMP frameworks; the signals at 120 and
129-140 ppm represent the carbon nuclei of the HC=C and aromatic
units, respectively. These spectral data are consistent with the chemi-
cal structures of both FFC—CMPs.

We recorded Brunauer—Emmett—Teller (BET) isotherms at 77 K
to investigate the porosities of FTPE-CMP, FPy-CMP, TPE-FFC—CMP,
and Py-FFC—CMP (Fig. 3). The isotherms of FTPE-CMP [Fig. 3(a)] and
FPy-CMP [Fig. 3(e)] reveal mesoporous structures for these CMP poly-
mers (type IV according to IUPAC classification). The surface area
(Sger) and total pore volume (Vioa) for FTPE-CMP were 31 m? g~!
and 0.06 cm® g1, respectively; for FPy-CMP they were 191 m? g~!
and 0.17 cm® g, respectively. Nonlocal density functional theory
(NL-DFT) revealed that the pore size distributions of FTPE-CMP and
FPy-CMP were 1.24—2.37 [Fig. 3(b)] and 2.14-5.85 [Fig. 3(f)] nm,
respectively. The TEM images in Fig. 3(c) and 3(g) reveals that these
two CMPs were mesoporous with a few microporous structures hav-
ing pore sizes of 1.5-2.5 nm. We suspect that the BET surface area
and pore volume of FPy-CMP were higher than those of FTPE-CMP
because a pyrene unit is more planar than a TPE unit, allowing the
former to feature stronger m-stacking and a more ordered structure.
After attaching ferrocene units to these two CMP polymers, TPE-
FFC—CMP [Fig. 3(a)] and Py-FFC—CMP [Fig. 3(e)] provided similar
type IV curves for their mesoporous structures; the values of Sger and
Viotal decreased, however, to 8 m? g~ and 0.04 cm> g~!, respectively,
for TPE-FFC—CMP and to 50 m? g~ ! and 0.07 cm? g, respectively,
for Py-FFC—CMP. The pore size distributions were 0.47—2.83 nm for
TPE-FFC—CMP [Fig. 3(b)] and 1.96-5.48 nm for Py-FFC—CMP [Fig. 3
(f)], as confirmed through TEM imaging [Fig. 3(d) and 3(h)] of the
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Fig. 2. 3C NMR spectra of (a) CD-BZ, (b) TPE-FFC—CMP, (c) TPE-FFC/CD-BZ CMP, (d) Py-FFC—CMP, and (e) Py-FFC/CD-BZ CMP.

microporous structures. Thus, we suspect that the ferrocene units
attached to these two CMP polymers as side groups occupied their
porous spaces, thereby decreasing the surface areas and pore vol-
umes. The hysteresis loops for all of the CMP materials were not
closed because of the flexibility of the polymeric frameworks and
their swelling through gas adsorption upon elastic deformation; this
behavior has been observed for several CMPs [11,57].

Although the total pore volume and surface area both decreased
after attaching the ferrocene units to these two CMPs, the thermal
properties of TPE-FFC—CMP and Py-FFC—CMP both increased signif-
icantly, based on TGA measurements performed under N at a heat-
ing rate of 20 °C min~! (Fig. 4). For example, FTPE-CMP provided a
value of Ty10 0f 357 °C and a char yield of 59.6 wt% at 800 °C, but these
values increased significantly for TPE-FFC—CMP to 527 °C and
67.3 wt%, respectively. Furthermore, FPy-CMP provided a value of
Tq10 of 321 °C and a char yield of 53.2 wt% at 800 °C, but for Py-
FFC—CMP they had increased significantly to 470 °C and 74.7 wt%,
respectively. These values suggest outstanding thermal stability and
rigidity for TPE-FFC—CMP and Py-FFC—CMP. Table 1 summarizes
the BET and TGA data of these four CMP polymers.

Fig. 5 displays the X-ray diffraction (XRD) patterns of our two
FFC—CMPs; weak diffraction peaks appeared at 13.3°, indicative of
their amorphous structures. We used SEM (Figure S5) to study the
morphologies of these two FFC—CMPs; the images revealed the
aggregation of spherical structures.

3.3. Preparation and thermal curing polymerization of FFC/CD-BZ and
FFC/CD-BZ CMP ICs

Because ferrocene forms an IC with B-CD, our FFC—CMPs readily
underwent attachment of their ferrocene units through host—guest
interactions with the water-soluble BZ-functionalized CD derivative

CD-BZ in reasonable yield. The formation of the ICs was evidenced by
the solution progressively becoming turbid; the uncomplexed CD-BZ
was then removed by washing the ICs with acetone and water. To
confirm that ICs could form between the FFC—CMPs and CD-BZ, we
used 2D NOESY NMR spectroscopy to investigate the interaction of
an equimolar mixture of the low-molecular-weight model compound
FFC and CD-BZ (Fig. 6). Several NOE correlation peaks (green squares)
existed between the signals of the protons Hs and Hs of CD-BZ and
the signals of the protons of the substituent and Cp units
(4.1-4.5 ppm) of FFC, consistent with a host—guest arrangement of
FFC and CD-BZ. XRD, FTIR spectroscopy, TGA, and solid-state '3C CP/
MAS NMR spectroscopy provided further evidence for the formation
of the FFC—CMP/CD-BZ ICs.

The FTIR spectra of the three ICs in Fig. 1 reveal signals for both
CD-BZ and the FFC derivatives, implying that both components were
present. The broad signal for the OH groups of CD-BZ near 3383 cm ™!
was slightly shifted to 3396 cm ™! in the spectra of the ICs, consistent
with the presence of host—guest complexation of CD-BZ and the FFC
derivatives. Fig. 2 displays solid-state >C CP/MAS NMR spectra of CD-
BZ, TPE-FFC—CMP, and Py-FFC—CMP individually and of their corre-
sponding ICs. The spectra of their ICs feature signals for both CD-BZ
and the FFC—CMPs, again implying that both components were pres-
ent in the ICs. The signals of the glucose units in the spectrum of the
pure CD-BZ were resolved [Fig. 2(a)], whereas in the spectra of the
ICs they were unresolved [Fig. 2(c) and 2(e)], suggesting the forma-
tion of a symmetrical cyclic conformation for the CD in the ICs, with
each glucose unit experiencing a similar chemical environment. Fig. 5
displays the XRD patterns of CD-BZ, TPE-FFC—CMP, and Py-FFC CMP
individually and of their corresponding ICs. The XRD pattern of the
pure CD-BZ revealed a crystalline structure, with peaks at 12.4, 18.4,
and 24.4°[70]. The peaks for CD-BZ were broader than those of pure
B-CD, suggesting that the crystalline structure was slightly distorted
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Table 1
BET and TGA data for the CMPs prepared in this study.

Sample Surface area (m?/g) Pore size (nm) Tg70(°C) Char Yield (%)
FTPE-CMP 31 1.24-237 357 59.6
TPE-FFC—CMP 8 0.47-2.83 527 67.3
FPy-CMP 191 2.14-5.85 321 53.2
Py-FFC—CMP 50 1.96-5.48 470 74.7

as a result of one of the OH groups being substituted by a BZ unit. In
contrast to the pattern of the pure CD-BZ, those of both FFC—CMP/
CD-BZ ICs featured amorphous halos, consistent with CD-BZ having
formed ICs with the FFC units of the CMP frameworks, as displayed in
Schemes 1(c) and 1(d); the CD-BZ units were isolated and, therefore,
both FFC—CMP/CD-BZ ICs possessed amorphous structures.

The FFC/CD-BZ and both FFC—CMP/CD-BZ ICs were also thermally
stable, based on TGA analyses (Fig. 7). The FFC/CD-BZ IC provided a
value of Ty10 of 315 °C and a char yield of 27.6 wt% at 800 °C; these
values were, as expected, between those of the pure CD-BZ
(Ta10 = 236 °C; char yield = 7.4 wt%) and pure FFC (T410 = 347 °C; char
yield = 31.3 wt%) [Fig. 7(a)]. We observed similar phenomena for the
TPE-FFC—CMP/CD-BZ IC [T410 = 311 °C; char yield = 47.2 wt%; Fig. 7
(b)] and the Py-FFC—CMP/CD-BZ IC [Tq410 = 322 °C; char yield = 61.1
wt%; Fig. 7(c)], with values again being between those of the pure
CD-BZ and the corresponding FFC—CMPs. Furthermore, the TGA
traces of all of the ICs revealed three-step thermal degradation: water
desorption in the first step (ca. 3 wt% loss) at 100—200 °C, the FFC

derivatives decomposing primarily in the second step at 200—400 °C,
and CD-BZ and the remaining FFC decomposing mainly in the final
step at temperatures above 400 °C. All of the characterization data
obtained through these FTIR spectroscopic, solid-state NMR spectro-
scopic, XRD, and TGA analyses were consistent with the formation of
FFC—CMP/CD-BZ ICs.

The FFC—CMP/CD-BZ ICs reported herein are the first examples of
CMP materials possessing BZ units assembled through host—guest
interactions of FFC and 8-CD units. Most interestingly, the BZ units of
these FFC—CMP/CD-BZ ICs could undergo ROP, readily converting to
phenolic and tertiary amino functional groups through one-step
chemical transformations in the solid state [Schemes 1(e) and 1(f)];
this process has never been reported previously for CMPs featuring
host—guest interactions with an acceptable surface area and pore
volume. To investigate the ROP behavior of the FFC—CMP/CD-BZ ICs
in the solid state, we recorded their XRD patterns (Fig. 5); the XRD
patterns of the FFC—CMP/poly(CD-BZ) ICs were both similar to those
of the uncured FFC—CMP/CD-BZ ICs, indicating that no morphologi-
cal change had occurred during their ROPs. Furthermore, Fig. 8 dis-
plays the FTIR spectra and TGA traces of the FFC—CMP/CD-BZ ICs
before and after ROP. Fig. 8(a) and 8(b) reveals that the peaks at 937
and 1157 cm™! for the oxazine ring and C—O—C stretching, respec-
tively, both disappeared after thermal curing polymerization of both
FFC—CMP/CD-BZ ICs. All of the signals become broad after the ther-
mal ROPs, consistent with cross-linked network structures that
restricted the molecular vibrations of both FFC—CMP/poly(CD-BZ)
ICs. We also investigated the thermal stabilities of the FFC—CMP/CD-

(a) : EFDC-)l/BéD-BZ Complex (b)
e FFC

—— CD-BZ
TPE-FFC/CD-BZ CMP
s TPE-FFC-CMP

(C) —— CD-BZ
= Py-FFC/CD-BZ CMP
= Py-FFC-CMP

100

Weight Loss (%)

OI'I'I'I'I LI

150 300 450 600 750

150 300 450 600 750

150 300 450 600 750

Temperature (°C)

Fig. 7. TGA traces of (a) CD-BZ, FFC, and the FFC/CD-BZ complex; (b) CD-BZ, TPE-FFC—CMP, and the TPE-FFC/CD-BZ CMP; and (c) CD-BZ, Py-FFC—CMP, and the Py-FFC/CD-BZ CMP.
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BZ ICs before and after their thermal ROPs [Fig. 8(c) and 8(d); Table
S1]. After thermal ROP of the TPE-FFC/poly(CD-BZ) CMP IC, the value
of T410 (364 °C) and the char yield (50.1 wt%) were both higher than
those prior to the thermal ROP (Ty10 = 311 °C; char yield = 47.2 wt%);
similarly, the Py-FFC/poly(CD-BZ) CMP IC also exhibited a higher
value of T410 (366 °C) and a higher char yield (62.1 wt¥%) after its ther-
mal ROP (prior to ROP: Ty10 = 322 °C; char yield = 61.1 wt%). Thus,
both of the FFC—CMP/poly(CD-BZ) ICs had outstanding thermal
decomposition temperatures, presumably due to their greater num-
ber of intramolecular (OH---N) and intermolecular (OH---O) hydrogen
bonds after their ROPs. In addition, the thermal stabilities of these
two FFC—CMP/poly(CD-BZ) ICs were also higher than those of FTPE-
CMP (Tq410 = 357 °C) and FPy-CMP (Ty10 = 321 °C), in the absence of
the FFC/poly(CD-BZ) IC units; thus, the thermal curing of the CD-BZ
units did, indeed, improve the thermal stability.

3.4. CO uptake

In addition to developing a new approach for the solid-state
chemical transformations of CMPs, through the application of
host—guest interactions of FFC and S-CD units and subsequent
ROPs of their BZ units, we suspected that the new functionality in
the CMPs—the cavities and glucose units of the 8-CD moieties and
the phenolic OH units and Mannich bridges of the BZ moieties—
might be capable of interacting with molecules of CO,. Fig. 9 and
Table S1 summarize the CO, capture, recorded at 298 °C and 1 bar,
of FFC—CMP and the FFC—CMP/CD-BZ ICs before and after their

ROPs. Fig. 9(a) reveals that the CO, uptake abilities of TPE-
FFC—CMP and the TPE-FFC—CMP/CD-BZ and TPE-FFC—CMP)/poly
(CD-BZ) ICs were 1.17,0.81, and 1.31 mmol g~ !, respectively; Fig. 9
(b) reveals that for Py-FFC—CMP and the Py-FFC—CMP/CD-BZ and
Py-FFC—CMP/poly(CD-BZ) ICs these values were 1.89, 1.04, and
1.42 mmol g~!, respectively. The CO, capture ability of Py-
FFC—CMP was higher than that of TPE-FFC—CMP because the for-
mer had a higher pore volume and surface area—generally favor-
able for CO, uptake in a porous material lacking polar functional
groups. The CO, capture ability decreased for both FFC—CMP/CD-
BZ ICs, presumably because the attached CD-BZ units decreased
the surface area and pore volume. The CO, capture abilities of the
FFC—CMP/poly(CD-BZ) ICs after their ROPs were, however, higher
than those of their corresponding FFC—CMP/CD-BZ ICs, presum-
ably because the high abundance of N atoms and phenolic OH
groups derived from the BZ units were capable of acid/base
(N---C=0), hydrogen bonding (OH---0=C), or other high-affinity
interactions with CO, [48]. Interestingly, the CO, uptake of the
TPE-FFC—CMP/poly(CD-BZ) IC after ROP (1.31 mmol g~!) was
higher than that of TPE-FFC—CMP (1.17 mmol g 1), but lower than
that of the Py-FFC—CMP/poly(CD-BZ) IC (1.42 mmol g~!) after
ROP, which itself was lower than that of Py-FFC—CMP which might
be attributed to degrade some functional groups during the curing
process and low N atoms contents inside Py-FFC—CMP/poly(CD-
BZ) IC. As a result, the overall CO, capture abilities of our CMP
materials were strongly correlated to their pore volumes, the sur-
face chemical functional groups, and surface areas.
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3.5. Electrochemical performance

We measured the electrochemical performance of our CMP mate-
rials in terms of their galvanostatic charge/discharge (GCD) and CV
behavior, in 1 M aqueous KOH using a three-electrode system. Fig-
ures S6(a) and S6(b) display the CV curves of TPE-FFC—CMP and Py-
FFC—CMP, respectively, recorded in the potential window from +0.1
to —0.90 V (vs. Hg/HgO) at various sweep rates from 5 to 200 mV s .
The CV curves of these two FFC—CMP samples had rectangular
shapes featuring humps, indicating that their capacitive responses
originated from both electric double-layer capacitance (EDLC) and
pseudocapacitance, arising from the presence of electron-rich phenyl
rings and electroactive ferrocene backbones, in which redox pro-
cesses occurred during the charging and discharging processes
[71,75-79]. The ferrocene backbones within TPE-FFC—CMP and Py-
FFC—CMP underwent reversible one-electron redox processes, as
revealed in the voltammetric profiles [Figures S6(a) and S6(b)]. The
current density provided by Py-FFC—CMP was higher than that of
TPE-FFC—CMP. The peak current densities increased upon increasing
the sweep rate from 5 to 200 mV s~ !, while the shapes of the CV
curves were retained, indicative of good electron transporting prop-
erties and facile kinetics [9,80,81]. Figures S6(c) and S6(d) present the
GCD curves of TPE-FFC—CMP and Py-FFC—CMP, respectively, mea-
sured at various current densities from 0.5 to 20 A g~'. The GCD
curves of these two FFC—CMP samples were triangular with a slight
bend, suggesting both EDLC and pseudocapacitive characteristics
[82—84]. The GCD curves of these two samples displayed the typical
features of pseudocapacitors, with high symmetry indicating good
electrochemical reversibility and capacitance performance [85]. The
discharging time of Py-FFC—CMP was longer than that of TPE-
FFC—CMP [Figures S6(c) and S6(d)], indicating that the capacitance
of the former was greater than that of the latter [Figure S6(e)]. Figure
S6(e) presents the specific capacitances of TPE-FFC—CMP and Py-
FFC—CMP, calculated from GCD curves using Eq. (S1). The capaci-
tance of Py-FFC—CMP was relatively higher (5.07 F g ') than that of
TPE-FFC—CMP (4.8 F g~1) at a current density of 0.5 A g~!, presum-
ably because Py-FFC—CMP featured a higher surface area (50 m?
g~ 1), higher pore volume (0.07 cm® g~1), better 7r-stacking, and a
more ordered structure. We tested the durability of these two sam-
ples by cycling them over 2000 times at 10 A g~ ! [Figure S6(f)]. TPE-
FFC—CMP and Py-FFC—CMP both displayed good cycling stability
[Figure S6(f)], with retentions of their original capacitances of 89.87%
and 90.65%, respectively, after 2000 cycles. Figures S7(a) and S7(b)
present the CV profiles of the TPE-FFC—CMP/CD-BZ and TPE-
FFC—CMP/poly(CD-BZ) ICs, respectively. Their CV curves were rect-
angular, indicating that their capacitive responses originated mainly
from EDLC (with minor pseudocapacitance), arising from the pres-
ence of electron-rich phenyl rings, electroactive ferrocene backbones,
and heteroatoms (N and O atoms) [75—79]. In addition, the current
density of the TPE-FFC—CMP/poly(CD-BZ) IC after ROP was higher
than that of the TPE-FFC—CMP/CD-BZ IC. Figures S7(c) and S7(d)
present the GCD curves of the TPE-FFC—CMP/CD-BZ and TPE-
FFC—CMP/poly(CD-BZ) ICs, respectively. These GCD curves were tri-
angular with a slight bend, suggesting the characteristics of both
EDLC and pseudocapacity [78—81]. The discharging time of the TPE-
FFC—CMP/poly(CD-BZ) IC was longer than that of the TPE-
FFC—CMP/CD-BZ IC [Figures S7(c) and S7(d)], indicating that the
capacitance of the former was greater than that of the latter [Figure
S7(e)]. Figure S7(e) presents the specific capacitances of the TPE-
FFC—CMP/CD-BZ and TPE-FFC—CMP/poly(CD-BZ) ICs. The capaci-
tance of the TPE-FFC—CMP/poly(CD-BZ) IC after ROP (37.07 F g 1)
was much higher than that of the TPE-FFC—CMP/CD-BZ IC (7.53 F
g~1) at a current density of 0.5 A g~!. We attribute this behavior to
the high contents of N atoms and phenolic OH groups derived from
the BZ units. These two TPE-FFC—CMP/CD-BZ and TPE-FFC—CMP/
poly(CD-BZ) ICs displayed excellent cycling stability [Figure S7(f)],

with retentions of their original capacitances of 94.3 and 96.03%,
respectively, after 2000 cycles. Fig. 10(a) and 10(b) displays the CV
curves of the Py-FFC—CMP/CD-BZ and Py-FFC—CMP/poly(CD-BZ)
ICs, respectively. These curves were rectangular, indicating that the
capacitive responses originated mainly from EDLC (with minor pseu-
docapacitance), arising from the presence of electron-rich phenyl
rings, electroactive ferrocene backbones, and heteroatoms (N and O
atoms) [75—79]. In addition, the current density of the Py-FFC—CMP/
poly(CD-BZ) IC after ROP was higher than that of the Py-FFC—CMP/
CD-BZ IC. Fig. 10(c) and 10(d) presents the GCD curves of the Py-
FFC—CMP/CD-BZ and Py-FFC—CMP/poly(CD-BZ) ICs, respectively.
These GCD curves were triangular shapes with a slight bend, suggest-
ing the characteristics of both EDLC and pseudocapacity [79—-81]. The
discharging time of the Py-FFC—CMP/poly(CD-BZ) IC after ROP was
longer than that of the Py-FFC—CMP/CD-BZ IC [Fig. 10(c) and 10
(d)], indicating that the capacitance of the former was larger than
that of the latter [Fig. 10(e)]. Fig. 10(e) provides the specific
capacitances of the Py-FFC—CMP/CD-BZ and Py-FFC—CMP/poly
(CD-BZ) ICs. The capacitance of the Py-FFC—CMP/poly(CD-BZ) IC
after ROP (46 F g~') was much higher than that of the Py-
FFC—CMP/CD-BZ IC (10.15 F g~') at a current density of 0.5 A
g~!, presumably because of the high contents of N atoms and
phenolic OH groups derived from the BZ units. These two Py-
FFC—CMP/CD-BZ and Py-FFC—CMP/poly(CD-BZ) ICs displayed
excellent cycling stability [Fig. 10(f)], with retentions of their
original capacitances of 95.2% and 97.49%, respectively, after 2000
cycles. Table S2 compares the specific capacitances of these mate-
rials with those reported previously for other materials. Gratify-
ingly, the specific capacitance of the Py-FFC—CMP/poly(CD-BZ) IC
after ROP was higher than those of previously reported covalent
organic frameworks (COFs) and other CMPs [82,86-89].

4. Conclusions

Two FFC—CMP/CD-BZ CMP inclusion complexes were formed
through supramolecular host-guest interactions between the ben-
zoxazine-linked Cyclodextrin (CD-BZ) and ferrocene unit of
FFC—CMP. The obtained FFC—CMP/CD-BZ ICs were examined by
using FTIR, 2D NOESY 'H NMR, solid-state '3C CP/MAS NMR, X-ray
diffraction, and TGA analyses. After thermal curing polymerization
(ROP), the Py-FFC/poly(CD-BZ) CMP ICs exhibited outstanding ther-
mal stability (T4;0 = 366 °C) with char yield of 62.1%, which could be
attributed to the presence of intramolecular (OH—N) and intermo-
lecular (OH—O) hydrogen bonding interactions. Interestingly, the
Py-FFC—CMP/poly(CD-BZ) ICs revealed higher CO, uptake ability of
1.42 mmol g~'and higher specific capacitance of 46 F g~'at current
density 0.5 A g~ . In addition, we expect that these new porous mate-
rials could be used for other potential applications such as dyes
adsorption, iodine capture, and photocatalytic H, evolution from
water.
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