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Abstract
Two porous organic/inorganic microporous polymers (TPE-DDSQ POIP and Car-DDSQ POIP) were prepared through 
the Sonogashira-Hagihara coupling reaction of DDSQBr with 1,1,2,2-tetrakis(4-ethynylphenyl)ethene (TPE-T), and 
3,3´,6,6´-tetraethynyl-9,9´-bicarbazole (Car-T); respectively. The chemical structure and properties of these two materials 
including thermal stability, porosity, crystallinity, and morphology were characterized in detail by using various instru-
ments. Based on TGA analyses,  Car-DDSQ POIP exhibited high thermal degradation temperature up to 439 °C and char 
yield up to 77.4 wt.% because inorganic DDSQ unit could enhance the thermal stability as expected. The electrochemical 
results revealed that TPE-DDSQ POIP and Car-DDSQ POIP showed specific capacitance of 22 and 23 F  g−1 at 1 A  g−1; 
respectively in a three-electrode with KOH solution (6 M) as electrolyte and capacitance retention at about 93% after 2000 
galvanostatic charge–discharge cycles.
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Introduction

Supercapacitors have been become an interesting topic in 
the industry and academic fields because of their unique 
characteristics such as excellent cycling stability, high dura-
bility, rapid charge–discharge process, low maintenance 
cost, and high-power density [1–10]. Supercapacitors can 
be considered as an important new sustainable device to 
reduce environmental pollution and energy crisis [11–20]. 
The supercapacitor mechanisms are divided into double-
layer capacitance and pseudocapacitance. As known, most 
carbon materials were already used for double-layer capaci-
tance such as templated porous carbons, activated carbon, 
graphite oxide, carbon nanotubes, and carbon aerogels 
[21–28]. Nowadays, the using pseudocapacitors devices are 
more than double-layer capacitance because their unique 
features such as possess reversible redox reactions on the 
electrode surface, and they can store charges in the double 

layer [29–39]. Metal oxides/hydroxides materials, cova-
lent organic polymers (COPs), metal–organic framework 
(MOF), and conducting polymers could be applied in pseu-
docapacitance [37–39]. Porous organic polymers (POPs) 
are considered as emerging materials due to their tunable 
porosity, post-functionalization modifications, good thermal 
stability, chemical resistance, and optoelectronic properties 
[40–50]. The POPs have applied in various potential applica-
tions including power storage devices, separation analysis, 
optoelectronic, heterogenous catalysis, light-harvesting, 
oxygen reduction reaction, drug delivery, gas adsorption, 
water treatment, hydrogen evolution  (H2), lithium, potas-
sium, and sodium-ion batteries, chemosensing and so on 
[51–60]. The preparation of POPs could be achieved through 
different kinds of methods including Sonogashira-Hagihara, 
Yamamoto coupling, Suzuki coupling, Buchwald–Hartwig 
(BH) coupling, chemical oxidative polymerization, Heck 
and Schiff-base condensation reactions [61–67].

Inorganic polyhedral oligomeric silsesquioxane (POSS) 
is considered as smallest silica nanostructured material with 
a diameter in the range 1–3 nm and has numerical formula 
 (RSiO1.5)n. The CMPs properties (such as flame water resist-
ance, mechanical, chemical, and thermal stabilities) could 
be significantly improved through the incorporation of 
rigid POSS moieties in their polymeric framework [68–75]. 
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As reported, the synthesis of CMPs materials containing 
bulky POSS nanocomposite unit could be achieved by 
Heck, Suzuki, and Sonogashira-Hagihara coupling reaction 
[76–82]. Double-decker–shaped polyhedral silsesquioxanes 
(DDSQ) are considered a type of biofunctionalized POSS 
derivatives and DDSQ molecule has been used to produce 
polymer/POSS nanocomposites including polyimide and 
polyurethane. As expected, the incorporation DDSQs into 
the polymeric framework can be enhanced the thermal prop-
erties of the materials due to it is bulky and hollow structures 
[72, 73]. Bicarbazole molecule is heterocyclic and nonplanar 
compounds with full aromaticity and large dihedral angles 
at around 70° [12, 83, 84]. Bicarbazole compound is easily 
prepared through the oxidation of carbazole derivatives by 
 KMnO4 and bicarbazole moiety has been applied  in OLEDs 
and energy storage applications [12, 83, 84].

We have successfully prepared mesoporous poly(cyanate 
ester)–functionalized DDSQ and these framework materi-
als having good thermal stability and a specific capacitance 
of 20 F  g−1 at 5 mV  s−1 [85]. To the best of our knowledge, 

this is the first report for the preparation of POIPs contain-
ing DDSQ, tetraphenylethene, and bicarbazole moieties 
and investigates their properties. Herein, by considering 
the interesting properties of POPs and DDSQ molecule, 
two POIPs- TPE-DDSQ POIP and Car-DDSQ POIP were 
prepared successfully through the Sonogashira-Hagihara 
coupling reaction of brominated DDSQ as a building unit 
with 1,1,2,2-tetrakis(4-ethynylphenyl)ethene (TPE-T), and 
3,3´,6,6´-tetraethynyl-9,9´-bicarbazole (Car-T), as dis-
played in Scheme 1. The surface morphologies, thermal 
stability, chemical structure, and porosity properties of 
TPE-DDSQ POIP and Car-DDSQ POIP were investigated 
in detail by using different instruments. As expected, both 
these two POIPs materials displayed high decompositions 
temperature up to 400 °C and char yield up to 70 wt.%, 
based on TGA results. Finally, according to the electro-
chemical results, we revealed that the TPE-DDSQ POIP 
and Car-DDSQ POIP showed high specific capacitance of 
22 and 23 F  g−1 at 1 A  g−1 compared with other porous 
materials.
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Scheme 1  Preparation of (b) DDNA (c) DDSQ (d) DDSQBr (e) TPE-DDSQ POIP and (f) Car-DDSQ POIP from (a) phenyltrimethoxylsilane
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Experimental

Materials

Methyldichlorosilane, phenyltrimethoxylsilane, sodium 
hydroxide (NaOH), platinum divinyltetramethyldisiloxane 
complex [Pt(dvs)], tetrahydrofuran (THF), magnesium sul-
fate  (MgSO4), 2- propanol, and charcoal were purchased from 
Alfa-Aesar.  Methanol (MeOH), ethanol (EtOH), sodium car-
bonate  (K2CO3), ethyl acetate, were purchased from Sigma-
Aldrich.  Et3N, CuI, triphenylphosphine  (PPh3), and Pd(PPh3)4 
were purchased from Sigma–Aldrich.  DMF was purchased 
from Acros. Double-decker silsesquioxane-Na (DD-Na), 
double-decker silsesquioxane (DDSQ), 3,3´,6,6´-tetrabromo-
9,9´-bicarbazole (Car-Br4), and tetrakis(4-bromophenyl)eth-
ylene (TPE-Br4) were synthesized at our lab [12, 25, 72, 73]. 
The preparation of 1,1,2,2-Tetrakis(4-((trimethylsilyl)ethy-
nyl) phenyl)ethane (TPE-TMS) and 3,3´,6,6´-Tetrakis((trime
thylsilyl)ethynyl)-9,9´-bicarbazole (Car-TMS) were provided 
in detail in the supporting information (Schemes S1 and S2, 
Figs. S1-S6).

Synthesis of DDSQBr

DDSQ (1 g, 0.87 mmol) and 4-bromostyrene (0.32 g, 0.23 mL, 
1.75 mmol) were dissolved in 30 mL of toluene. After the 
refluxing, the reaction mixture at 50 °C for 1 h, few drops of 

Pt(dvs) were added, followed by refluxing at 90 °C for 2 days. 
Then, charcoal was added to the resulting mixture to remove 
the catalyst and the filtrate was concentrated. After that, the 
obtained white solid was washed with EtOH to give DDSQBr 
(0.80 g, 60.74%). 1H NMR (500 MHz,  CDCl3, δ, ppm,): 
7.52–6.9 (Ar–H), 2.67 (4H,  ArCH2CH2), 1.52 (4H, Si(CH3)
CH2CH2Ar).

1,1,2,2‑Tetrakis(4‑ethynylphenyl)ethene (TPE‑T)

50 mL of anhydrous methanol was added into a mixture 
of  K2CO3 (2.04  g, 14.82  mmol) and TPE-TMS (1.00  g, 
1.47 mmol). After stirring for 24 h, the solution was poured 
into 200 mL of water to remove the excess amount of base to 
afford a pale-yellow precipitate (0.80 g, 93%). FTIR (KBr, 
 cm–1, Fig. S7): 3273 (≡C–H), 2109 (C≡C stretching). 1H NMR 
(500 MHz,  CDCl3, δ, ppm, Fig. S8): 7.24 (d, 8H), 6.93 (d, 8H), 
3.06 (s, 4H, ≡C–H). 13C NMR (125 MHz,  CDCl3, δ, ppm, 
Fig. S9): 143.8, 141.6, 132.36, 132, 121.24, 83.6 (≡C–Ar), 
77.88 (≡C–H).  (Td5: 252.18 °C, char yield: 70.73%, Fig. S10).

3,3´,6,6´‑Tetraethynyl‑9,9´‑bicarbazole (Car‑T)

50 mL of anhydrous methanol was added into Car-TMS 
(0.440 g, 0.650 mmol) and  K2CO3 (0.900 g, 6.52 mmol). 
After stirring for 24 h, the solution was poured into 200 mL 
of water to afford a pale-yellow precipitate (0.35 g, 80%). 

Fig. 1  1H NMR spectra of (a) 
DDSQ and (b) DDSQBr. FTIR 
profile of (c) DDSQ and (d) 
DDSQBr. MALDI-TOF mass 
spectra of (e) DDSQ and (d) 
DDSQBr
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FTIR (KBr,  cm–1, Fig. S11): 3285 (≡C–H), 2105 (C≡C 
stretching). 1H NMR (500 MHz,  CDCl3, δ, ppm, Fig. S12): 
8.32 (s, 4H), 7.51 (d, 4H), 6.84 (d, 4H), 3.09 (s, 4H, ≡C–H). 
13C NMR (125 MHz,  CDCl3, δ, ppm, Fig. S13): 140.24, 
132.02, 125.61, 122.24, 116.61, 109.77, 84.33 (≡C–Ar), 
76.67 (≡C–H). (Td5: 237 °C, char yield: 79.4%, Fig. S14).

Synthesis of TPE‑DDSQ POIP and Car‑DDSQ POIP

TPE-T or Car-T (100 g, 0.234 mmol), DDSQBr (710 mg, 
0.470 mmol), CuI (3.2 mg, 0.0170 mmol),  PPh3 (4.40 mg, 
0.0170 mmol), and Pd(PPh3)4 (19.20 mg, 0.0166 mmol) 
were dissolved in DMF (5 mL) and  Et3N (5 mL) was heated 
under reflux at 100 °C for 3 days in a Pyrex tube to afford 
TPE-DDSQ POIP as a green powder (0.08 g, 80%) and Car-
DDSQ POIP as a yellow powder (0.07 g, 70%).

Results and discussion

Synthesis of DDSQBr, TPE‑DDSQ POIP, and Car‑DDSQ 
POIP

Scheme 1 shows our synthetic method to prepare two dif-
ferent kinds of conjugated microporous polymers based on 
DDSQ nanocomposites. Firstly, DDSQ was prepared from 
the reaction of double-decker silsesquioxane-Na (DD-Na) 
with methyldichlorosilane in the presence of triethylamine 

as a base in THF as solvent [Scheme 1(b)]. Secondly, the 
brominated DDSQ (DDSQBr) was synthesized through the 
hydrosilylation reaction of DDSQ with 4-bromostyrene in 
the presence of Pt(dvs) as a catalyst and toluene as solvent 
at 90 °C for 48 h Scheme 1(c). Thirdly, two new TPE-DDSQ 
POIP and Car-DDSQ POIP were synthesized through the 
Sonogashira-Hagihara coupling reaction based on DDSQBr 
with TPE-T, and Car-T as shown in Scheme 1(d) and 1(e).

The chemical structures of DDSQ and DDSQBr were 
confirmed by FTIR, 1H-NMR and MALDI-TOF measure-
ments. Figures 1(a) and (b) display the 1H-NMR spectra of 
DDSQ and DDSQBr in  CDCl3, recorded at room tempera-
ture. The proton signals of DDSQ appeared at 4.99 (peak 
a), 0.36 (peak b), and 7.54–7.18 ppm which are assigned to 
Si–H, Si-CH3, and aromatic protons: respectively Fig. 1(a) 
[72, 73]. The 1H-NMR spectrum of DDSQBr (Fig. 1(a)) 
shows the signals at 1.52, 2.67, and 7.52–6.90 ppm cor-
responding to  SiCH2CH2,  ArCH2CH2, and aromatic pro-
tons, respectively. In addition, the disappearance signals at 
4.99 ppm for the Si–H unit in the 1H-NMR spectrum of 
DDSQBr, indicating the complete hydrosilylation reaction 
of DDSQ with 4-bromostyrene and formation of DDSQBr 
in high purity. The characteristics absorption bands of 
DDSQ and located at 3075, 1260, and 1136  cm−1, which 
are attributed to the stretching CH aromatic, Si −  CH3, 
and Si–O-Si units, as displayed in Fig. 1(c) and (d). The 
absorption band of the Si − H stretching was completely dis-
appeared in the FTIR spectrum of DDSQBr (Fig. 1(d)) after  

Fig. 2  (a) and (b) FTIR 
analyses of DDSQBr, TPE-T, 
Car-T, TPE-DDSQ POIP, and 
Car-DDSQ CMP. (c) and (d) 
Solid-state 13C NMR and XRD 
spectra of TPE-DDSQ POIP 
and Car-DDSQ POIP
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the hydrosilylation and transformation reactions. Further-
more, the molecular structures of DDSQ and DDSQBr 
were also confirmed via MALDI-TOF mass spectrometry 
measurements as shown in Fig. 1(e) and (f). Both DDSQ and 
DDSQBr mass spectra feature one signal centered at 1176 
and 1546 g/mol for [DDSQ +  Na]+ and [DDSQBr +  Na]+; 
respectively. Mass spectral, NMR, and FTIR confirmed the 
successful preparation of the new DDSQBr monomer.

To confirm the formation and successful synthesis of 
our new TPE-DDSQ POIP and Car-DDSQ POIP, the FTIR 
and solid-state NMR analyses were performed as shown in 
Fig. 2. As presented in the FTIR profile (Fig. 2), the charac-
teristic absorption bands of DDSQBr (Figs. 1(d) and 2(a)) 
are located at 3075, 1260, and 1136  cm−1 for the aromatic 
CH stretching, Si-CH3 stretching, and the Si–O-Si unit. The 
FTIR spectrum of TPE-T (Fig. 2(a)) showed the peaks for 
the alkynyl C-H stretching, and–C≡C–stretching at 3275 
and 2097  cm−1, respectively. In addition, the FTIR spec-
trum of Car-T (Fig. 2(b)) showed a strong and weak absorp-
tion band at 3279 and 2099  cm−1, corresponding to alkynyl 
C-H stretching, and –C≡C– stretching. Both FTIR spectrum 
of  TPE-DDSQ POIP and Car-DDSQ POIP (Fig. 2(a) and 
(b)) displayed the absorption signals centered at 3445, 1261, 
and 1133  cm−1, respectively, representing to absorbed water, 
Si-CH3 and Si–O-Si units. we observed that the disappear-
ance absorption band for alkynyl C-H stretching in the FTIR 
spectra of TPE-DDSQ POIP and Car-DDSQ POIP, indicat-
ing that successful and complete the Sonogashira-Hagihara 

coupling of DDSQBr with TPE-T, and Car-T; respectively. 
The solid-state 13C NMR spectra of TPE-DDSQ POIP 
and Car-DDSQ POIP (Fig. 2(c)) revealed signals located 
in the ranges 141.82–122.77 and 140.15–123.26 ppm for 
TPE-DDSQ POIP and Car-DDSQ POIP respectively, cor-
responding to the carbon resonance of the aromatic units. 
In addition, the carbon nuclei of the internal alkynyl bonds, 
ArCH2CH2 and SiCH2CH2 units appeared at 83.38, 31.72, 
and 16.59 ppm, respectively in both TPE-DDSQ CMP and 
Car-DDSQ POIP polymeric framework. The XRD analyses 
(Fig. 2(d)) displayed that the TPE-DDSQ POIP and Car-
DDSQ POIP had amorphous properties and no possess any 
crystalline peaks.

Thermal degradation temperatures  (Td5 and  Td10) and 
char yield were 318 °C, 406 °C, and 71.4 wt.%; respec-
tively, for TPE-DDSQ POIP and 290 °C, 439 °C and 77.4 
wt.%; respectively for Car-DDSQ POIP, based on TGA 
analyses (Fig. 3and Table S1). In addition, the continuous 
weight loss starting from relatively low temperatures for 
TPE-DDSQ POIP and Car-DDSQ POIP framework due 
to the aliphatic  CH2-CH2 units as a flexible group in the 
DDSQ moiety. Furthermore, both materials showed excel-
lent thermal stability up to 400 °C.

To scrutinize the porosity properties and BET specific 
surface areas of TPE-DDSQ POIP and Car-DDSQ POIP, 
 N2 adsorption/desorption measurements were done at 
77 K, as displayed in Fig. 4. As shown in Fig. 4(a) and 
(b), the  N2 adsorption/desorption curves of TPE-DDSQ 

Fig. 3  TGA analyses of (a) 
TPE-DDSQ POIP and (b) Car-
DDSQ POIP
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Fig. 4  N2 adsorption/desorp-
tion and pore size distribution 
of TPE-DDSQ POIP (a, c) and 
Car-DDSQ POIP curves (b, d)
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POIP and Car-DDSQ POIP features type I and IV with 
BET specific surface area and total pore volume of 157.67 
 m2  g−1, 0.20  cm3  g−1, and 256.34  m2  g−1, 0.25  cm3  g−1; 
respectively. Also, the  N2 adsorption/desorption profiles 
of the TPE-DDSQ POIP and Car-DDSQ POIP showed 
the high  N2 uptake at low and high pressure, indicating 
the presence of micro and mesoporous inside their poly-
meric framework. We observed that the hysteresis loop 
of  N2 adsorption/desorption curves of TPE-DDSQ POIP 
and Car-DDSQ POIP (Fig. 4(a) and (b)) does not close 
completely during the gas adsoprtion process because of 
the presence of POSS as a flexibility structure inside the 
polymeric framework of these materials by elastic defor-
mations. The pore size distribution of these two materials 
was investigated by using the non-local density functional 
theory (NLDFT) model, as shown in Fig. 4(c) and (d). The 
results revealed that the pore size distribution of the TPE-
DDSQ POIP was in the ranges 1.06–2.76 nm. While the 
pore size distribution of the Car-DDSQ POIP was in the 
ranges 1.14–2.78 nm.

The surface morphologies were examined through SEM 
and TEM measurements for TPE-DDSQ POIP and Car-
DDSQ POIP, as seen in Fig. 5(a) and (b). The SEM images 
[Fig. 5(a) and (b)] revealed that interconnected aggregated 
small spheres in these materials. Furthermore, TEM analy-
ses showed that these materials feature amorphous proper-
ties which consistent with XRD analyses and microporous 
structure [Fig. 5(c) and (d)].

The improvement of   CO2 uptake performance of the 
porous polymers strongly depends on permanent porosity, 
high BET surface area, and incorporation of some polar 
groups (such as COOH, -OH, -NH2) in their framework 
structure [12, 14, 31, 86–88]. Thus, the  CO2 uptake perfor-
mance of TPE-DDSQ POIP and Car-DDSQ POIP (Fig. 6(a) 
and (b)) was checked through the  CO2 isotherm analyses, 
recorded at two different temperatures (298 and 273 K). 
From Fig. 6, The values of  CO2 adsorption capacity reached 
to be 0.76 and 0.90 mmol  g−1 for TPE-DDSQ POIP at 298 
and 273 K; respectively. While the values of  CO2 uptake of 
Car-DDSQ POIP were found to be 0.81 mmol  g−1 at 298 and 
0.95 mmol  g−1 at 273 K. The results showed that Car-DDSQ 
POIP possesses good  CO2 uptake compared to TPE-DDSQ 
POIP which is assigned to its high  SBET surface area and the 
presence of N atoms in the bicarbazole units, which could 
enhance the interaction with  CO2 molecules.

Electrochemical performance of TPE‑DDSQ POIP 
and Car‑DDSQ POIP

The electrochemical properties of the TPE-DDSQ POIP 
and Car-DDSQ POIP porous materials were tested through 
cyclic voltammetry (CV) and galvanostatic charge–dis-
charge (GCD) analyses. Fig. 7(a) and (b) show the cyclic 
voltammetry (CV) profiles at different scan rates from 5 
to 200 mV  s–1 within the potential window of -0.6 V to 
0.2 V and -0.8 V to 0.4 V versus Hg/HgO for TPE-DDSQ 

Fig. 6  CO2 uptake of (a) TPE-
DDSQ POIP and (b) Car-DDSQ 
POIP
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POIP and Car-DDSQ POIP, respectively. The resulting 
CV curve of the Car-DDSQ POIP (Fig. 7(b)) showed two 
redox peaks can be seen at all scan rates, which indicated 
that this material had pseudocapacitance and pseudopoten-
tial character. Interestingly, redox peaks of the Car-DDSQ 
POIP were kept even with increasing the scan rate from 
10 to 100 mV  s−1. When the scan rate was 200 mV  s−1, 
the redox peak currents were still observed at -0.25 V and 
0.004 V; respectively, and CV curve areas increased, indi-
cating that the Car-DDSQ POIP possess excellent capaci-
tance performance at all potential scan rate. On contrary, 
in the CV curve of the TPE-DDSQ POIP (Fig. 7(a)) can 
be observed irreversible redox peak that corresponds to 
the double bond in the TPE unit, demonstrating that this 
material had capacitance character. The GCD curves of the 
TPE-DDSQ POIP and Car-DDSQ POIP at different cur-
rent densities are presented in Fig. 7(c) and (d). The GCD 
profiles of the TPE-DDSQ POIP and Car-DDSQ POIP 

possessed triangular shapes with a slight bend. In addi-
tion, the GCD curve of Car-DDSQ POIP exhibited longer 
discharging times compared to the TPE-DDSQ POIP due 
to the presence of a carbazole unit within the Car-DDSQ 
POIP framework. Therefore, Car-DDSQ POIP had EDLC 
and pseudocapacity characteristics. The maximum spe-
cific capacitance of the TPE-DDSQ POIP and Car-DDSQ 
POIP (Fig. 8(a)) was determined through GCD curves to 
be 22 and 23 F  g−1; respectively at 1 A  g−1. Dichtel et al. 
revealed that TAAQ-TFP-COF displaying a specific capac-
itance of 48 F  g−1 at 0.2 A  g−1 [89]. In 2020, Mohamed 
et al. observed that hypercrosslinked polymers contain-
ing tetraphenylanthraquinone unit (An-CPOP-2) having a 
specific capacitance of 98.4 F  g−1 [90]. Furthermore, our 
COF materials based on electrodes such as Car-TPA-COF, 
Car-TPP-COF, Car-TPT COF, TPA-COF-1, TPA-COF-2, 
TPA-COF-3, TPT-COF-4, TPT-COF-5, and TPT-COF-6 
possess.
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capacitance values of 13.6, 14.5, 17.4, 51.3, 14.4, 
5.1, 2.4, 0.34, and 0.24 F  g−1 [91]. The performance and 
stability of the TPE-DDSQ POIP and Car-DDSQ POIP 
(Fig. 8(b)) based as electrodes were tested through  GCD 
measurement at 10 A  g−1. The results revealed that the 
capacitance retention rate of the TPE-DDSQ POIP and 
Car-DDSQ POIP was 89 and 93%; respectively after 2000 
cycles. Furthermore, the energy and power densities of 
the Car-DDSQ POIP electrode were higher than that of 
the TPE-DDSQ POIP, due to its high  SBET surface area, 
and  the presence of N atoms in the bicarbazole units, 
based on Ragone plots (Fig. 8(c)). In summary, the Car-
DDSQ POIP electrode had a higher specific capacitance 
(23 F  g–1) and capacitance retention (93%) compared with 
other porous materials (Table S2), demonstrating that 
Car-DDSQ POIP could be acted as a pseudocapacitive 
electrode material.

Conclusions

To conclude, two kinds of porous organic/inorganic POIPs 
(TPE-DDSQ POIP and Car-DDSQ POIP) based on inor-
ganic double-decker silsesquioxane, tetraphenylethene, 
and bicarbazole units have been successfully synthesized 
through the Sonogashira-Hagihara coupling reaction. In 

addition, these TPE-DDSQ POIP and Car-DDSQ POIP 
materials displayed outstanding thermal stability, accord-
ing to TGA measurements because of inorganic DDSQ 
in POIP. Furthermore, a new Car-DDSQ POIP possessed 
a high  specific capacitance of 23 F  g−1 at 1 A  g−1 and a 
good capacitance retention rate (93%) due to the presence 
of bicarbazole units, its  SBET surface area (256.34  m2  g−1), 
and large pore size (1.14–2.78 nm). Thus the Car-DDSQ 
POIP could be acted as a pseudocapacitive electrode 
material.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10965- 021- 02579-x.
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