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Abstract
Schiff base formation reaction is highly dynamic, and the microstructure of Schiff base polymers
is greatly affected by reaction kinetics. Herein, a series of Schiff base cross-linked polymers
(SPs) with different morphologies are synthesized through adjusting the species and amount of
catalysts. Nitrogen/oxygen co-doped hierarchical porous carbon nanoparticles (HPCNs), with
tunable morphology, specific surface area (SSA) and porosity, are obtained after one-step
carbonization. The optimal sample (HPCN-3) possesses a coral reef-like microstructure, high
SSA up to 1003 m2 g−1, and a hierarchical porous structure, exhibiting a remarkable specific
capacitance of 359.5 F g−1 (at 0.5 A g−1), outstanding rate capability and cycle stability in a 1M
H2SO4 electrolyte. Additionally, the normalized electric double layer capacitance (EDLC) and
faradaic capacitance of HPCN-3 are 0.239 F m−2 and 10.24 F g−1 respectively, certifying its
superior electrochemical performance deriving from coral reef-like structure, high external
surface area and efficient utilization of heteroatoms. The semi-solid-state symmetrical
supercapacitor based on HPCN-3 delivers a capacitance of 55 F g−1 at 0.5 A g−1, good cycle
stability of 86.7% after 5000 GCD cycles at 10 A g−1, and the energy density ranges from 7.64
to 4.86Wh kg−1.

Supplementary material for this article is available online

Keywords: kinetics control, Schiff base, carbon materials, hierarchical porous structure, tunable
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(Some figures may appear in colour only in the online journal)

1. Introduction

As the global energy crisis is aggravating, the demand for
sustainable, clean and environmentally harmonious energy
storage equipment becomes imminent. Supercapacitors,
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newly developed energy storage devices, possess many
merits, complementing secondary batteries, such as extra-
high-power density, instant charge/discharge ability and
superb durability [1–3]. The commercial value of super-
capacitors, to a large extent, depends on the supercapacitive
performance of electrode materials. Therefore, three cate-
gories of electrode materials, including transition metal oxi-
des/sulfides [4–6], conductive polymers [7, 8] and carbon
materials [1, 9, 10], have been developed. Among them,
heteroatom-doped carbon materials have attracted substantial
attention for their high specific surface area (SSA), excellent
chemical stability, terrific electrical conductivity and adjus-
table heteroatom content.

To date, heteroatom-doped carbon materials with large
SSAs, different morphologies, pore structures and composi-
tions have been designed and fabricated, and the effects of
SSA, porosity and composition on the supercapacitive per-
formance has been investigated [11–16]. Importantly, the
morphology of the carbon materials may not only affect the
available utilization of SSA, but also influence the ion dif-
fusion rate during the redox reaction [17–20]. Thus, a com-
parative investigation of the relationship between the
morphology of electrode materials and their corresponding
capacitive performance is of great significance for designing
high-performance electrode materials in supercapacitors.

Fabrication of high-performance carbon materials via
elegantly designed polymeric precursors has developed into a
generally adopted tactic, which not only can be used to adjust
the morphology and pore structure of the carbon materials
easily, but also introduce different heteroatoms into the car-
bon matrix [11, 12, 16, 21, 22]. The Schiff base formation
reaction is beneficial for the generation of rigid cross-linked
polymer networks, thus being superior for the design of car-
bon materials, with high capacitance and energy density
[23–26]. For example, Zhu et al synthesized nitrogen-rich
microporous carbon spheres (N-MCSs) through a simple
Schiff base reaction followed with a one-step carbonization-
activation procedure, which displayed a high capacitance of
292 F g−1 at a current density of 1.0 A g−1 and outstanding
cycling stability [11]. Li et al synthesized nitrogen-doped
hierarchical porous carbon materials (Ta-NCas) on the basis
of the Schiff base formation reaction, and Ta-NCas exhibited
remarkable supercapacitive performance in acidic (1M
H2SO4) and alkaline (6M KOH) electrolytes simulta-
neously [12].

Although there have been tremendous advances in the
design of Schiff base polymers for high-performance carbon
materials, few examples have paid attention to the morph-
ology control of Schiff base polymer precursors through the
adjustment catalyst. Herein, setting from rigid monomers of 1,
3, 5-tris(4-aminophenyl)benzene (TAB) and 1,
4-terephthalaldehyde (TPA), we prepared a series of cross-
linked Schiff base polymers (denoted as SPs) using acidic
catalysts. The morphology and size of the resultant SPs can be
easily adjusted by the catalyst species and concentration.
After a simple pyrolysis procedure, nitrogen/oxygen co-
doped hierarchical porous carbon nanoparticles (denoted as
HPCNs) with different morphologies can be obtained.

HPCNs exhibit superior supercapacitive performance, and the
optimal sample (HPCN-3) has a capacitance of 359.5 F g−1 in
a 1M H2SO4 electrolyte at 0.5 A g−1. A semi-solid-state
symmetrical supercapacitor based on HPCN-3 electrode
demonstrates a capacitance of 55 F g−1 (at 0.5 A g−1). We pay
particular attention to the effects of morphology, SSA and
pore structure on the electric double layer capacitance
(EDLC), pseudo-capacitance and the overall specific capaci-
tance of the carbon materials.

2. Experimental section

2.1. Materials

TAB and trifluoromethanesulfonic acid (CF3SO3H, TfOH)
were supplied by J&K Company. TPA, polyvinylidene
fluoride (PVDF), N-methylpyrrolidone (NMP) and polyvinyl
alcohol (PVA) were purchased from Aladdin Company.
Acetic acid (CH3COOH, HAc), sulfuric acid (H2SO4, SA),
mesitylene, 1, 4-dioxane and ethanol were obtained from
Shanghai Chemical Reagent Industry. All chemicals were
used as received without further purification.

2.2. Preparation of HPCNs

In a typical synthetic procedure, TAB (0.703 g, 2.0 mmol)
and TPA (0.40 g, 3.0 mmol) were placed in a round-bottom
flask, and dissolved in 5 ml of a mixed solvent containing
mesitylene and 1, 4-dioxane (v: v=1: 4). Subsequently, the
catalyst (such as TfOH, SA and HAc) was introduced into the
reaction solution under vigorous stirring. After 10 min reac-
tion, precipitates were obtained by filtration followed with
washing with ethanol three times. Orange solid powders of
SPs were obtained. These powders were placed in a muffle
furnace and carbonized for 2 h with a heating rate of 5 °C
min−1 in an Ar atmosphere to afford HPCNs.

As displayed in table 1, distinguished from the con-
centration of catalyst TfOH and the carbonization temper-
ature, the carbon materials are named HPCN-1, HPCN-2,
HPCN-3, HPCN-6 and HPCN-7, respectively. Also, SP-4 and
SP-5 were prepared by using SA and HAc as catalysts,
respectively.

2.3. Characterization

Fourier-transform infrared (FT-IR) spectra were recorded on a
Nicolet iS10 equipped with an ATR cell. Scanning electron
microscopy (SEM) images were taken from an SU-70
instrument under an acceleration voltage of 10 kV. Trans-
mission electron microscopy (TEM) images were obtained
from a JEM2100 instrument with an acceleration voltage of
200 kV. The high-angle annular dark-field scanning trans-
mission electron microscopy (HAADF-STEM) images and
elemental energy-dispersive x-ray spectroscopy (EDS) map-
ping were characterized by a FEI Talos F200 microscope
operated at 300 kV. Raman spectra were tested on an Xplora
with an excitation wavelength of 638 nm. X-ray photoelectron
spectroscopy (XPS) measurement was carried out on a PHI
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Quantum-2000 photoelectron spectrometer (Al Kα with
1486.6 eV) and all the spectra were calibrated with the C 1 s
peak at 284.8 eV as an internal standard. Nitrogen sorption
isotherms were investigated by an ASAP 2460 system, and all
samples were degassed at 120 °C for 24 h in a vacuum before
measurements.

2.4. Electrochemical measurement

All electrochemical tests were carried out on a CHI 760E
electrochemical station using a 1M H2SO4 electrolyte at
room temperature.

In a standard three-electrode system, HPCNs were used
as the working electrodes. Typically, 5 mg active materials
(95 wt%) and PVDF (5 wt%) were mixed in 63 μl of NMP to
form a uniform slurry. Then 2 μl slurry was dropped onto a
glassy carbon electrode (diameter: 3 mm), which was
polished smoothly using different sizes of Al2O3 powders.
Finally, the electrode was dried at 80 °C under vacuum for
12 h. The mass loading of active materials on each working
electrode was 0.15 mg. Saturated calomel electrode (SCE),
platinum foil were served as reference electrode and counter
electrode, respectively. Cyclic voltammetry (CV), gravimetric
charge/discharge (GCD) and electrochemical impedance
spectroscopy (EIS) tests were performed with a voltage
window of 0–1 V. The calculation formula (equation (1)) for
the specific capacitance is shown in the Supplementary
Information.

Also, a semi-solid-state symmetrical supercapacitor was
constructed by sandwiching a PVA/H2SO4 gel electrolyte
(size: 1 cm×1 cm×1 mm) between two pieces of HPCN-3
electrodes (the coating area is 1 cm×1 cm), and carbon film
served as the current collector. To be specific, the as-prepared
HPCN-3 slurry was evenly coated on the carbon film cleaned
with ethanol to obtained an electrode layer, followed by
drying at 80 °C for 12 h. The mass loading of active materials
on each electrode layer was 1.5 mg cm−2. PVA/H2SO4 gel
was prepared using the following procedure: 6 g PVA was
dissolved into 30 ml of 1 M H2SO4 aqueous solution at 95 °C
to make the solution completely clear. All measurements were
carried out with a potential window of 0–1 V. Equations (2)–
(6), for the specific capacitance obtained from GCD curves,
energy density, and power density, are given in the Supple-
mentary Information.

3. Results and discussion

The Schiff base formation reaction has been extensively
employed to generate various functional polymer materials
such as stimuli–response nanoparticles [27, 28], smart
hydrogels [29, 30], covalent organic frameworks (COFs)
[31, 32], and so on. Since this reaction is highly dynamic, the
structure of the Schiff base polymer networks is greatly
affected by the reaction kinetics. In this work, we use TAB
and TPA as monomers and different amounts or types of
acids including TfOH, SA and HAc as catalysts to create a
series of SPs. As illustrated in figure 1, these reactions are
easily carried out in a mixed solvent of mesitylene and 1,
4-dioxane (v: v=1: 4) in the presence of the catalysts.
Notably, the morphology of the SPs can be easily adjusted by
changing the concentration or species of the acidic catalysts.
After a simple pyrolysis procedure, HPCNs with different
morphologies can be constructed.

3.1. Morphology and structure of the polymer precursors and
carbon materials

Figure S1 (available online at stacks.iop.org/NANO/32/
305602/mmedia) gives the FT-IR spectra of the monomers
and SPs. Apart from the difference in signal intensity of
unreacted –NH2 and –CHO groups, SP-3, SP-4 and SP-5
show similar FT-IR spectra. Compared with the FT-IR spectra
of monomers, the peaks at 3353 (the stretching vibration of
-NH2 groups) and 1685 cm−1 (the stretching vibration of
C=O bond) of SPs attenuate substantially.

A new characteristic absorption peak at 1621 cm−1

ascribed to the stretching vibration of C=N bond appears in
the FT-IR spectra of SPs [11, 12, 31, 33]. These results
provide an indication for the cross-linking reaction between
TAB and TPA.

The composition and morphology of SPs were char-
acterized to clarify the effect of the catalysts on the cross-
linking reaction. Table S1 displays the element contents of
SPs calculated from XPS spectra. N content changes slightly
with the altering of the acidic catalyst concentration or spe-
cies, which may be caused by the different condensation
polymerization degrees between TAB and TPA. To give an
insight into the effect of catalysts on the Schiff base reaction,
N 1 s XPS spectra of TAB monomer and SPs were analyzed
(figure S2 and table S2). For TAB, only one peak centered at

Table 1. Sample details of SPs and HPCNs.

SPs Catalyst

Name Amount/μl cH
+/mol l−1 Temperature/°C HPCN

SP-1 TfOH 5 0.0112 850 HPCN-1
SP-2 15 0.0339 HPCN-2
SP-3 25 0.0565 HPCN-3
SP-4 SA 25 0.1878 HPCN-4
SP-5 HAc 200 0.7 HPCN-5
SP-3 TfOH 25 0.0565 750 HPCN-6

950 HPCN-7
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399.6±0.1 eV is observed, ascribed to the NH2 group. For
SPs, three new peaks appear, C=N (398.9±0.1 eV),
–C=NH+ (401.2±0.1 eV) and -NH3

+ (401.9±0.1 eV),
except for the NH2 peak (399.6±0.1 eV) with evidently
decreased intensity, certifying the successful synthesis of
cross-linked polymers and the uncompleted Schiff base
reaction [34–36]. Intriguingly, apart from SP-5, with the
increase of the concentration of acidic catalyst, the -NH2

content gradually decreases and the contents of generated
C=N, –C=NH+ and –NH3

+ simultaneously increase. These
results imply that strong acidic catalyst can promote the Schiff
base reaction and the excessive H+ induces the protonation of
the imine bond and amino group simultaneously.
Figures 2(a), S3, and S4 show the SEM and TEM images of

SPs. SP-1, prepared using 5 μl of TfOH as the catalyst,
exhibits a surface-wrinkled spherical structure with an aver-
age diameter of approximately 400 nm. SP-3, catalyzed with
25 μl of TfOH, displays a coral reef-like shape, while SP-2,
catalyzed with 15 μl of TfOH, shows both spherical and coral
reef-like shapes. These results illustrate that changing the
concentration of TfOH can adjust the morphology of the
precursors because of the variation of reaction rates. SP-4
using 25 μl of SA and SP-5 using 200 μl of HAc as catalysts
both display adhesively spheroidal structures, but the particle
size of SP-5 is much larger than that of SP-4. The appearance
of adhesively spheroidal morphology may be because the
density of the active center is too high, resulting from the high
concentration of acidic catalyst; therefore the products are

Figure 1. Synthetic process of SPs and HPCNs.

Figure 2. TEM images of SP-3 (a) and HPCN-3 (b), (c), HAADF-STEM image and EDS element mapping for HPCN-3 (d), Raman spectra
(e), N2 adsorption/desorption isotherms (f) and the NLDFT pore size distribution (g) of HPCNs.
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easy to aggregate. To a certain extent, acidic catalysts with
stronger acidity or higher concentration can accelerate the
imine bond formation reaction rate [37]. We infer that a high
reaction rate leads to the formation of reef-like Schiff base
polymer precursors, while a low reaction rate results in the
formation of spherical Schiff base polymer precursors.

HPCNs can preserve the original morphologies of their
corresponding precursors after carbonization (figures 2(b) and
S5). High-resolution TEM images of the carbon materials
(figures 2(c) and S6) show an apparently porous structure.
Evident lattice fringes can be identified in the carbon mate-
rials except HPCN-5, suggesting that smaller particle size is
helpful for the formation of ordered structures. EDS element
mapping of HPCN-3 shown in figure 2(d) confirms that the
coexistence of C, N, and O elements and each element is
evenly dispersed in the carbon matrix. This is beneficial for
enhancing the utilization of heteroatoms and improving the
surface wettability of electrode materials, as well as enlarging
the faradaic capacitance produced by nitrogen- and oxygen-
containing functional groups [1, 9, 12, 15, 38, 39].

The Raman spectra are acquired to characterize the car-
bon structures (figure 2(e)). All carbon materials display two
typical peaks located at 1341 cm−1 (D bond, symbol of dis-
ordered structure and defects) and 1589 cm−1 (G bond, rela-
ted to ordered graphitized structure), respectively. The
intensity ratio of the D and G bands (ID/IG) is used to assess
the degree of graphitization [38, 40, 41]. The ID/IG values of
HPCN-1, HPCN-2 and HPCN-3 are 1.11, 1.13 and 1.12,
respectively, implying that the TfOH concentration can not
remarkably affect the graphitization degree. For HPCN-4, the
ID/IG value (1.06) is clearly lower. This may be due to the
smaller particle size, which is conducive to the formation of
ordered structures during carbonization. Conversely, the
ID/IG value of HPCN-5 (1.18) is evidently higher, which can
be attributed to the larger content of heteroatoms as certifi-
cated by the XPS results [14, 42].

Nitrogen adsorption–desorption measurements at 77 K
were performed to analyze the SSA and pore properties of
HPCNs. As displayed in figures 2(f) and S7, all the samples
exhibit fast nitrogen uptake under relatively low pressure
(P/P0<0.01), indicating the presence of abundant micro-
pores (<2 nm), which is valuable to increase the SSA and
provide a sufficient electrode/electrolyte contact interface for
ion or charge accumulation [39, 43, 44]. Except HPCN-5,
samples show a narrow hysteresis loop (0.4�P/P0�1.0),
suggesting the coexistence of meso- (2–50 nm) and macro-
pores (>50 nm). This can play the role of ion-buffering
reservoirs, thus shortening the ion/mass transmission distance
and facilitating the faradaic reactions at a high current density
[12, 38, 45, 46]. The pore size distribution curves calculated
by non-local density functional theory (NLDFT) are depicted
in figure 2(g). All pore distribution curves show two major
peaks at pore size ranges of 0.6–0.9 nm and 1–1.2 nm. An
additional secondary wide peak ranging from 12 to 60 nm
appears in the NLDFT pore distribution curves of HPCN-1,
HPCN-2, HPCN-3 and HPCN-4, indicating that these four
samples have well-developed hierarchical micro-, meso-, and
macropore structures [12, 15, 16, 38, 39, 45, 47]. SSA values

and pore volumes are summarized in table S3. The SSA
values of HPCN-1, HPCN-2, HPCN-3, HPCN-4 and HPCN-5
are 876, 924, 1003, 989 and 1230 m2 g−1, respectively, with
corresponding t-plot micropore areas of 852, 888, 948, 955
and 1228 m2 g−1. The external surface areas of HPCN-1,
HPCN-2, HPCN-3, HPCN-4 and HPCN-5 calculated by the
t-plot method are 23.66, 36.35, 55.18, 33.88 and 2.05 m2 g−1,
and their pore volumes are 0.41, 0.43, 0.47 0.81 and 0.47 cm3

g−1, respectively. Notably, HPCN-5 has the largest micropore
area and highest microporosity of 99.8%, which are a dis-
advantage for fast diffusion of electrolyte ions. As SP-5 has
the largest particle size because of the lowest catalytic effi-
ciency of acetic acid, the escape of heteroatoms is favorable
for generating micropores instead of meso- and macropores
during the carbonization process. From these results, we infer
that the formation of coral reef-like structure in the Schiff
base polymer precursors is beneficial for the generation of
well-developed hierarchical pore structures in the carbon
materials.

The XPS spectra of all carbon materials show three
strong peaks of C, N, and O elements (figure 3(a)). Taking
HPCN-3 as an example, the high-resolution C 1 s spectrum
(figure 3(b)) is deconvolved into three signals, which are
assigned to C=C/C–C (284.8±0.1 eV), C–N/C–O
(285.6±0.1 eV) and C=O (288.2±0.1 eV), respectively
[48, 49]. The high-resolution N 1 s spectrum (figure 3(c)) is
fitted to four peaks: pyridine N (N-6, 398.4±0.1 eV), pyr-
role N (N-5, 399.7±0.1 eV), quaternary N (N-Q,
401.1±0.1 eV) and oxidized-N (N-Ox, 403±0.1 eV)
[50, 51]. Normally, graphitic N can enhance conductivity, and
pyridinic N and pyrrole N can create active sites, thus
enhancing the electronic transmission and improving the
generation of faradaic pseudo-capacitance [1, 9, 38, 44, 52].
In the case of the high-resolution O 1 s spectrum (figure 3(d)),
two deconvoluted peaks centering at 531.5±0.1 eV and
532.8±0.1 eV are observed, ascribed to O=C and C–O–C/
C–OH, respectively [53].

The element contents of C, N, and O evaluated from XPS
measurements (figures 3 and S8) are provided in table S3,
which reveal that HPCN-4 and HPCN-5 have lower N con-
tents in comparison with that of HPCN-1, HPCN-2 and
HPCN-3. This is possibly due to the fact that SP-4 and SP-5
have more protonated imine bonds and higher protonated
amine content, derived from the excessive hydrogen ion
concentration, which are the unstable species. Additionally,
the catalytic activity of HAc is too low, making a large
amount of unreacted amine group remains in SP-5, thus
resulting in the loss of N atoms during carbonization process
(table S3).

3.2. Electrochemical properties of HPCNs

To obtain the optimal carbonization temperature, SP-3 was
carbonized at different temperatures, 750, 850 and 950 °C, to
afford HPCN-6, HPCN-3 and HPCN-7, respectively. The
electrochemical properties of these HPCNs were evaluated
through CV and GCD measurements in a three-electrode
system with the 1M H2SO4 electrolyte at the potential
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Figure 3. XPS spectra of all samples (a); high-resolution XPS spectra of HPCN-3: C 1s (b), N 1s (c) and O 1s (d).

Figure 4. Electrochemical performance of HPCNs in 1 M H2SO4: CV curves of HPCNs at 50 mV s−1 (a); CV curves of HPCN-3 at scan rates
from 5 to 200 mV s−1 (b); GCD profiles of HPCNs at 0.5 A g−1 (c); GCD profiles of HPCN-3 at current densities from 0.5 to 10 A g−1 (d).
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window of 0–1 V. From the CV and GCD curves (figure S9),
it is clear that HPCN-3 has the largest CV curve areas at a
scan rate of 50 mV s−1. Compared with HPCN-6 (242 F g−1)
and HPCN-7 (282.5 F g−1), HPCN-3 also has a much higher
specific capacitance (359.5 F g−1) at the current density of
0.5 A g−1. Therefore, we chose the carbonization temperature
of 850 °C to generate other HPCNs.

The CV curves of the HPCNs at a scan rate of 50 mV s−1

(figure 4(a)) display similar quasi-rectangular shapes. Nota-
bly, the gradient of current density change at the switching
potential of HPCN-3 approaches 90° and its CV area is larger
in comparison with that of HPCN-1, HPCN-2, HPCN-4 and
HPCN-5. Clearly, HPCN-3 shows much better electric double
layer behavior and optimal supercapacitive performance
[50, 54, 55]. With an increase in the scan rate from 5 to
200 mV s−1, the current density distinctly increases, while the
CV curves of HPCNs (figures 4(b), S10(a)–(d)) maintain the
original quasi-rectangular shapes. Furthermore, broad redox
peaks ranging from 0.1 to 0.5 V (versus Hg/Hg2Cl2) can be
observed, which are associated with the redox reaction of the
pyrrolic N, pyridinic N, and oxygen-containing functionalities
[12, 53, 54, 56, 57]. GCD profiles of HPCNs at the current
density of 0.5 A g−1 (figure 4(c)) display near isosceles tri-
angular shapes and have no sharp IR drops during the dis-
charging process, which manifests their good electrical
conductivity and excellent electrochemical reversibility
[14, 38]. Consistent with the CV results, the specific capaci-
tance of HPCN-3 (359.5 F g−1) is higher than that of HPCN-1
(246.5 F g−1), HPCN-2 (290 F g−1), HPCN-4 (289.5 F g−1)
and HPCN-5 (146.5 F g−1) and is also superior or comparable
to a previously reported work using the Schiff base formation
reaction to make porous carbon materials (table S5).

Since redox peaks appear in CV curves and the shape of
GCD profiles are deviated, the capacitance of HPCNs are
composed of EDLC and faradaic capacitance. To evaluate the
contributions of EDLC and faradaic capacitance to the total
capacitance, equation (1) is employed and the specific form is
given as follow [38, 58, 59]:

C k k t , 11 2
1 2 ( )/= +

where k1 corresponds to the rate independent part associated
with EDLC, k2t

1/2 represents the limited diffusion portion
depending on the current density, and t is discharge time. The
trends of the capacitance values with the square root of the
discharge time are depicted in figures S11(a)–(e). Based on
the theory of equation (1), the value of the intersection point
of the dotted line and the Y-axis is consistent with the
contribution of EDLC, and the detailed results are summar-
ized in table S4. At a current density of 0.5 A g−1, the
capacitances rooted in EDLC of HPCN-1, HPCN-2, HPCN-3,
HPCN-4 and HPCN-5 are 190, 210, 240, 186 and 70 F g−1,
with corresponding faradaic capacitance portions of 56.5, 80,
119.5, 103, and 76.5 F g−1, respectively. Theoretically, car-
bon materials with large SSAs have outstanding EDLC, and
while this possesses high heteroatom content, excellent far-
adaic capacitance can be expected. Intriguingly, HPCN-3
displays optimal EDLC and faradaic capacitance, but shows
medium SSA and heteroatom content, as identified by N2

adsorption–desorption measurements and XPS. This result
may be related to the different utilizations of SSA and het-
eroatoms due to the difference in SSA and morphologies. To
give a deep insight into the reason, the EDLC is normalized
by the SSA and the faradaic capacitance is normalized by the
heteroatom content [21, 60]. As presented in table S4, HPCN-
1, HPCN-2, HPCN-3, HPCN-4, and HPCN-5 have normal-
ized EDLC values of 0.216, 0.227, 0.239, 0.188, and
0.056 F m−2, and normalized faradaic capacitances of 4.98,
7.24, 10.24, 9.12, and 5.93 F g−1, respectively. Clearly,
HPCN-3 with secondary SSA shows the largest normalized
EDLC, while HPCN-5, possessing the largest SSA, displays
the smallest normalized EDLC. Probably, the coral reef-like
morphology is favorable towards exposing a greater external
surface area, which makes the SSA easy to be exploited,
whereas the larger particle size of HPCN-5 is dis-
advantageous for the electrolyte ion penetrating into the bulk
body of carbon materials, resulting in the poor use of
micropores. In addition, HPCN-3 shows superior normalized
faradaic capacitance, which can be explained by two factors:
(i) the coral reef-like morphology is likely to expose more
heteroatoms on the external surface area, and thereby the
electrolyte ion is easier to access heteroatoms on the surface;
(ii) the larger SSA improves the electroadsorbed possibilities
between the electrolyte ion and heteroatoms. Hence, the SSA
and morphology of electrode materials have a significant
effect on the efficient utilization of SSA and heteroatoms,
therefore leading to enhanced capacitance.

To measure the rate capability of HPCNs electrodes,
GCD profiles at different current densities (0.5 to 30 A g−1)
were tested (figures 4(d), S10(e)–(h) and S12). Specifically,
even at a high current density of 30 A g−1, the specific
capacitances of HPCN-1, HPCN-2, HPCN-3, HPCN-4 and
HPCN-5 remain 156.6, 194.7, 236.4, 135.3 and 47 F g−1,
respectively. In reference to the capacitances at a current
density of 0.5 A g−1, the rate retention performance of these
samples are 63.53%, 67%, 65.8%, 46.73% and 32.08%,
respectively (figure 5(a)). This trend implies that the coral
reef-like structure can facilitate the fast transport of electrolyte
ions at high current densities, thereby improving the rate
performance of the electrode materials [61, 62].

To obtain a deep understanding of the intrinsic electro-
chemical behavior of as-prepared carbon materials, EIS was
performed (figures 5(b), (c)). From the Nyquist plot, HPCN-3
shows the steepest line near 90° at the low-frequency range,
indicating its remarkable electrical double layer capacitance
behavior. The solution resistance (Rs) and charge-transfer
resistance (Rct) between the electrode and electrolyte were
calculated based on the equivalent circuit shown in
figure 5(b). Also, the Rs values of HPCN-1, HPCN-2, HPCN-
3, HPCN-4 and HPCN-5 are 0.56, 0.51, 0.49, 0.56, and 0.65
Ω, and the corresponding Rct values are 0.75, 0.71, 0.74, 0.8
and 1.09 Ω, respectively. Clearly, the Rs and Rct values of
HPCN-5 are significantly higher than the others, suggesting
that the bulk structures are not conducive to mass/charge
transmission. HPCN-3 exhibits both relatively small Rs and
Rct values, demonstrating its superior electron conduction
and faster ion/charge diffusion ability in the electrolyte [63].
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These results further demonstrate that HPCN-3 possesses the
best capacitive behavior.

The cycle life of electrode materials is also a major
parameter affecting the practical application of super-
capacitors [2]. Thus, the cycle stability of HPCN-3, which
showed the best capacitance performance, was characterized
by GCD cycling at a current density of 10 A g−1 for 5000
times. The capacitance retention of HPCN-3 electrodes
eventually reached up to 97.9%, confirming the outstanding

cycle stability as well as its reasonable morphology and pore
structure (figure 5(d)).

3.3. Electrochemical performance of semi-solid-state
symmetrical supercapacitor

We also evaluated the electrochemical performance of
HPCN-3 in a semi-solid-state symmetrical supercapacitor. As
shown in figure 6(a), all CV curves can retain a similar rec-
tangular shape at scan rates varying from 5 to 200 mV s−1.
The GCD profiles of the as-prepared supercapacitor depicted
in figure 6(b) demonstrate a triangle-like shape at current
density ranging from 0.5 to 10 A g−1. The specific capaci-
tance of the semi-solid-state supercapacitor is 55 F g−1 at a
current density of 0.5 A g−1, and the corresponding capaci-
tance of the single HPCN-3 electrode is 220 F g−1. To eval-
uate the rate performance of the supercapacitor, GCD
measurements at different current densities were tested. The
capacitance remains at 130.5 F g−1 at a current density of
20 A g−1, and thus good rate performance (59.3%) can be
achieved from 0.5 to 20 A g−1 (figure 6(c)). Figure 6(d)
shows the Ragone plot calculated through the GCD data at
varying current densities: the energy density of the as-pre-
pared supercapacitor decreases from 7.64 to 4.86Wh kg−1,
while the power density increases from 0.25 to 5 kW kg−1.
This result implies that the energy density of our HPCN-3
based semi-solid-state symmetrical supercapacitor is below
the medium level of the reported supercapacitor devices with
doped carbon materials as the electrodes and PVA/H2SO4 gel
as the electrolyte [64–67]. Notably, one supercapacitor device
can light up a small LED bulb (the inset picture in

Figure 5. Specific capacitance as a function of different current
densities of HPCNs (a); the Nyquist plots (b) and the magnified
higher-frequency region of the Nyquist plots (c)of HPCNs; the
stability evaluation of HPCN-3 at 10 A g−1 (d).

Figure 6. Electrochemical performance of HPCN-3 in a semi-solid-state supercapacitor: CV curves at a scan rate varying from 5 to
200 mV s−1 (a); GCD profiles at current densities from 0.5 to 10 A g−1 (b); specific capacitance as a function of different current densities
(c); the Ragone plot calculated through GCD data at varying current densities and the picture of using as-prepared supercapacitor to light up
an LED bulb (d); the Nyquist plots, with the inset showing the magnified higher-frequency region (e); the cycle stability at the current density
of 10 A g−1, with the inset showing the comparison of the first and last lap of GCD profiles (f).
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figure 6(d)). EIS measurement was used to demonstrate the
ion diffusion and charge transfer ability (figure 6(e)). The
Nyquist plot shows an inconspicuous small semi-circular arc
in the high-frequency region, suggesting excellent charge
transfer ability between the electrode and electrolyte
[38, 68, 69]. The linear part of the low-frequency region
symbolizes the ideal capacitive behavior of this device.
Moreover, we evaluated the cycle ability of the as-prepared
device through the GCD cycles. After 5000 cycles of charge
and discharge processes at a current density of 10 A g−1, as
displayed in figure 6(f), the capacitance retention rate was
86.7%, exhibiting good electrochemical reversibility of
electrodes.

4. Conclusion

In summary, through a simple Schiff base formation reaction,
a series of SPs with different morphologies were successfully
synthesized by adjusting the concentration of catalyst TfOH,
or replacing TfOH with SA and HAc. This was followed by a
simple one-step carbonization procedure where N/O co-
doped hierarchical porous HPCNs possessing different
morphologies, SSAs and pore structures were prepared. The
HPCNs exhibited excellent electrochemical performance in
the 1M H2SO4 electrolyte. The coral reef-like HPCN-3 has a
high SSA of 1003 m2 g−1, a hierarchical porous structure, and
the highest specific capacitance of 359.5 F g−1 at a current
density of 0.5 A g−1. Additionally, a semi-solid-state sym-
metrical supercapacitor based on HPCN-3 electrodes was
constructed, the as-prepared device exhibited a capacitance of
55 F g−1 at 0.5 A g−1, and the energy density was
7.64Wh kg−1 (4.86Wh kg−1) while the power density was
0.25 kW kg−1 (5 kW kg−1). This research demonstrates that
changing the species or concentration of the catalyst during
the synthesis of Schiff base polymer precursors can cause a
difference in morphology and in the composition of polymers,
ultimately affecting the electrochemical performance of the
carbon materials, which is instructive for the development of
heteroatom-doped carbon materials; simultaneously, increas-
ing the external surface area can improve the effective utili-
zation of the SSA and heteroatoms, which has important
guiding significance for the design of electrode materials in
supercapacitors.
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