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Abstract
In this study we developed a simple strategy to synthesize macro- and mesoporous carbons by using a high-molecular-weight
triblock copolymer, PCL440-b-PEO454-b-PCL440 (CEC), as a single template, itself prepared through simple ring-opening poly-
merization from a commercial homopolymer (HO-PEO454-OH) as the bifunctional macroinitiator and a resol-type phenolic resin
as the carbon source.We employed differential scanning calorimetry, Fourier transform infrared (FTIR) spectroscopy, and small-
angle X-ray scattering to investigate the thermal behavior, hydrogen bonding, and self-assembled nanostructures of the phenolic/
CEC blends.We obtainedmacro- and mesoporous carbons possessing cylinder or spherical micelle structures with large pores (>
50 nm) and high surface areas (>400 m2 g−1), the result of most of the phenolic OH units preferring to interact (based on FTIR
spectral analyses) with the PEO segment rather than the PCL segment. These macro/mesoporous carbons displayed reasonable
CO2 uptake and energy storage behavior.
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Introduction

Porous materials featuring high surface areas and large pore
volumes have many possible applications in, for example,
separation, catalysis, drug delivery, adsorption, and energy
storage.1–6 The IUPAC has classified three kinds of porous
materials, depending on their pore sizes7: microporous mate-
rials (<2 nm), mesoporous materials (2–50 nm), and
macroporous materials (>50 nm).

Although mesoporous materials are generally synthesized
through the use of phase separation, foaming, molecular im-
printing, and hard-template methods, such approaches yield
well-defined ordered mesoporous materials.7–10 Block copol-
ymers often self-assemble into structures having various
forms after blending with other block copolymers, homopol-
ymers, or block copolymer mixtures capable of competing for
hydrogen bonding interactions.11–20 Indeed, through this ap-
proach, block copolymer/homopolymer blends have been
used to obtain many types of mesoporous materials, including
silicas, phenolic resins, and carbons.21–25 Although the com-
mercial Pluronic-type triblock copolymer poly(ethylene ox-
ide–b–propylene oxide–b–ethylene oxide) has been used
widely as a template for the preparation of mesoporous mate-
rials, limitations in the molecular weights of Pluronic-type
triblock copolymers have made it difficult to synthesize meso-
porous carbons this way with pore sizes greater than
10 nm.26–31 PEO-based diblock copolymers featuring long
hydrophobic segments of high molecular weight—for exam-
ple, poly(ethylene oxide–b–methyl methacrylate) (PEO-b-
PMMA), poly(ethylene oxide–b–styrene) (PEO-b-PS), and
poly(ethylene oxide–b–caprolactone) (PEO-b-PCL)—are
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promising candidate templates for the synthesize of large
mesoporous carbons.32–40 Indeed, PEO114-b-PMMA114,
PEO114-b-PS102, PEO114-b-PS230, and PEO114-b-PCL87

diblock copolymers have been used as templates to prepare
long-range-ordered mesoporous carbons; for example, the
largest pore size of approximately 23 nm was obtained when
templating with the largest molecular weight of the PEO-b-PS
diblock copolymer (PEO125-b-PS230).

32–40 Furthermore,
Wiesner et al. used a high-molecular-weight (ca.
100,000 g mol−1) PEO-b-PS-b-PI triblock copolymer as the
template to obtain a mesoporous carbon having an average
pore size of approximately 39 nm—the largest pores formed
when using a single block copolymer as the template.41

To further increase their pore sizes, Zhao et al. used PEO-b-
PS/PS and PEO-b-PMMA/PMMA blends as templates to pre-
pare ultralarge mesoporous carbons; here, the PS and PMMA
homopolymers acted as pore expanders.42.43 Nevertheless,
disordered porous structures having multimodal pore size dis-
tributions (ca. 40–90 nm) were obtained when the homopol-
ymer concentrations were greater than 20 wt%, because of
macrophase separation occurred under such conditions.42, 43

Because both the PEO-b-PMMA or PEO-b-PS diblock copol-
ymers were synthesized through atom transfer radical poly-
merization, using chain-end-modified PEO segments (e.g.,
PEO-Br) as macroinitiators, it was difficult to prepare them
with high molecular weights.32–35

In this study, we synthesized a high-molecular-weight (ca.
120,000 g mol−1) triblock copolymer, PCL440-b-PEO454-b-
PCL440 (CEC), through simple ring-opening polymerization
(ROP) from commerc ia l HO-PEO454-OH as the
macroinitiator. After applying thermal curing, calcination,
and carbonization procedures (Scheme 1), we obtained a
few mesoporous (30–50 nm) and large amounts of
macroporous (>50 nm) carbons when using the CEC triblock
copolymer as a single template along with a resol-type pheno-
lic resin as the carbon source. We investigated the thermal
behavior, hydrogen bonding, and self-assembled structures
of various phenolic/CEC blends, and then examined the pore
sizes, structures, surface areas, and pore volumes of the
resulting macro/mesoporous carbons. Herein, we also discuss
the CO2 capture and energy storage behavior of these easy-to-
prepare large macro/mesoporous carbons (>50 nm).

Experimental section

Materials

The triblock copolymer PCL440-b-PEO454-b-PCL440 (CEC)
was synthesized through ROP from caprolactone,
dihydroxyl-terminated poly(ethylene oxide) (PEO454), and
stannous(II) octoate. A mixture of ε-caprolactone and
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Scheme 1 Fabrication of (c) macro/mesoporous carbons templated by (a) a high-molecular-weight CEC triblock copolymer and (b) the self-assembled
structures formed from phenolic/CEC blends through reaction-induced micro-phase separation.
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PEO454 under N2 was treated with the catalyst (a small
amount) and then stirred continuously at 130 °C for 24 h under
a N2 atmosphere. The PCL440-b-PEO454-b-PCL440 triblock
copolymer was dissolved in CH2Cl2, precipitated in n-hexane
and dried under vacuum at 40 °C. Phenolic resin (resol-type)
having a molecular weight approximately 500 g mol−1 was
prepared from phenol and formaldehyde through condensa-
tion in the presence of NaOH.38, 39

Macro/mesoporous carbons

Various compositions of phenolic/CEC blends dissolved in
THF were stirred at room temperature for 2 days. The blend
systems were poured into Teflon dishes and then the solvent

was evaporated slowly at room temperature for 24 h [evapo-
ration-induced self-assembly (EISA)]. For thermal curing of
the phenolic resins, the dishes were heated in an oven at
150 °C for 2 days and then subjected to thermal calcination
(heating up to 700 °C at 1 °C min−1) to remove the templates
and provide the macro/mesoporous carbons (Scheme 1).

Results and discussions

Characterization of phenolic/PCL-b-PEO-b-PCL blends

Weprepared the PCL440-b-PEO454-b-PCL440 triblock copolymer,
for use as the template, through ROP; 1H NMR spectroscopy
revealed its molecular weight (Fig. 1). The signal for the CH2

units of the PEO block segment appeared at 3.65 ppm, while that
for theOCH2 units (peak f) of the PCL block segment appeared at
4.05 ppm. We determined the molecular weight from the ratio of
these two peak areas, and obtained, through GPC analysis, a
polydispersity (PDI) of 1.18 for this triblock copolymer. We syn-
thesized mesoporous carbons from phenolic/CEC blends: their
mesophases gradually formed during EISA, and then we applied
thermal curing and carbonization processes to remove the tem-
plate (Scheme 1).

In previous studies, we have investigated the hydrogen
bonding interactions of phenolic with PEO and PCL seg-
ments. The inter-association equilibrium constant for the
phenolic/PCL binary pair (KA = 116) is smaller than that for
phenolic/PEO (KA = 264), indicating that the OH units of phe-
nolic prefer to interact with PEO segments over PCL seg-
ments. Figure 2(a) presents the FTIR spectra (C=O absorption
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Fig. 1 1H NMR spectrum of CEC triblock copolymer prepared in this
study
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Fig. 2 FTIR spectra, measured at
room temperature, of various
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region) of various phenolic/CEC blends, recorded at room
temperature. The spectrum of the pure CEC features two ma-
jor signals at 1734 and 1724 cm−1, representing the amor-
phous (or free) and crystalline phases, respectively, of the
PCL segment.44, 45 Upon increasing the concentration of
phenolic, the fraction of the crystalline peak at 1724 cm−1

decreased and a shoulder signal appeared at 1708 cm−1,
representing hydrogen-bonded C=O units. Nevertheless,

the area fraction of the hydrogen-bonded C=O groups in
the phenolic/CEC = 80/20 blend was only 0.14, signifi-
cantly lower than that (0.88) in the phenolic/PCL = 80/20
blend, as determined through curve fitting.44, 45 Fig. 2(b)
presents the ether absorption region of the FTIR spectra of
the phenolic/CEC blends. The spectrum of the pure CEC
featured a characteristic signal at 1106 cm−1, due to the
ether (C–O–C) units in the PEO segment. At a high phe-
nolic concentration, this band shifted to 1097 cm−1,
representing the hydrogen-bonded C–O–C units. This be-
havior suggested that the phenolic OH units preferred to
interact with the PEO segment, rather than the PCL seg-
ment, in the phenolic/CEC blends.36–40

We used the cooling scans (cooling rate: 5 °C min−1) of
DSC thermograms to investigate the hydrogen bonding and
self-assembly of our phenolic/CEC blends [Fig. 3(a)]. The
freezing temperature (Tf) of the crystallization exotherm can
be correlated to the self-assembled nanostructure formed
through nonisothermal crystallization at a fixed cooling rate.
The pure CEC provided values of Tf of 29 °C for the PEO
segment and − 5 °C for the PCL segment, suggesting two
microphase domains formed for this triblock copolymer. For
the phenolic/CEC = 40/60 and 50/50 blends, we observed two
exotherms at +30/−18 °C and + 18/−44 °C, respectively; the
higher value presumably also represented crystallization of the
PEO segment, while the lower value was not observed for
either the PEO or PCL segment. In previous studies, we found
that the degree of supercooling (ΔT = Tm° – Tf) is strongly
dependent on the self-assembled nanostructures containing
PCL segments (Tm° = 75 °C) in confined crystallization; for
example, we have measured degrees of supercooling for la-
mellar, cylinder, and spherical nanostructures to be approxi-
mately 75, 125, and 130 °C, respectively.46 In this case,
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because we observed the two exotherms, homogeneous crys-
tallization of the PCL segment must not have occurred. The
SAXS patterns of these phenolic/PCL-b-PEO-b-PCL = 40/60
and 50/50 blends exhibited [Fig. 3(b)] only disorder (40/60)
and one broad peak (50/50), indicative of a disordered and a
short-range-ordered or wormlike structure, respectively.
Increasing the phenolic/CEC ratio to 60/40 and 70/30 resulted
in only a single value of Tf for the PCL segment in each case,
at −48 °C (ΔT = 123 °C) and − 50 °C (ΔT = 125 °C), respec-
tively, presumably with a cylinder structure, as determined
from the SAXS patterns featuring peak ratios of 1:√3 [Fig.
3(b)]. Further increasing the phenolic/CEC ratio to 80/20 led

to the major value of Tf for the PCL segment appearing at
−38 °C, also suggesting a cylinder or spherical micelle struc-
ture, as confirmed by the SAXS pattern having a peak ratio of
1:√3 [Fig. 3(b)].

Macro/Mesoporous carbons from phenolic/CEC blends

We thermally cured the phenolic matrix at 150 °C for
24 h and then used thermal calcination at 700 °C to re-
move the CEC template, thereby obtaining the macro/
mesoporous carbons. Figures 4 presents SAXS analyses
of the phenolic/CEC = 70/30 blend and its corresponding
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porous carbon, measured at room temperature. The peak
ratio did not change from 1:√3, but became sharper be-
cause the electron density contrast increased after pore
formation (i.e., upon removal of the CEC template), sug-
gesting that the original cylinder structure was main-
tained. In addition, the first scattering peak of the pheno-
lic/CEC = 70/30 blend having a value of q* of 0.076 nm−1

(d = 82.6 nm) shifted to a value of 0.102 nm−1 (d =
61.6 nm) after thermal calcination. Thus, the d-spacing
decreased after thermal pyrolysis, due to the continuous
removal of oxygen and hydrogen atoms to form the small
pores of the carbon material.

Figures 5 and S1 display the SAXS patterns, TEM images,
and corresponding pore size distributions (based on the TEM
images) of the porous carbons obtained from the correspond-
ing phenolic/CEC blends. Figure 5(a) presents the SAXS pat-
tern of the porous carbon derived from the phenolic/CEC =
80/20 blend; the two broad peaks indicated that at least two
different pore sizes self-assembled from the cylinder or spher-
ical micelle structure. This feature was confirmed from the
TEM images in Fig. 5(d); the broad pore size distribution,
based on TEM images, is provided in Fig. 5(g). The first peak
corresponded to a value of q* of 0.065 nm−1 (d = 96.6 nm);
thus, the pore size distribution ranged from 20 to 90 nm. This

material could, therefore, be classified as a macroporous and
mesoporous carbon. Figures 5(b) and 5(c) display the SAXS
patterns of the mesoporous carbons obtained from the pheno-
lic/CEC = 70/30 and 60/40 blends. Both patterns featured
peak ratios of 1:√3, suggesting cylinder or spherical micelle
structures, which were confirmed from the TEM images in
Figs. 5(e) and 5(f), respectively. These two porous carbons
had relatively narrow pore size distributions, but some of their
pores were larger than 50 nm; therefore, these two composi-
tions were presumably alsomacroporous and mesoporous car-
bons [Figs. 5(h) and 5(i)]. Furthermore, decreasing the
phenolic/CEC ratios to 50/50 and 40/60 led to porous carbons
having broad peaks in their SAXS patterns [Figs. S1(a) and
S1(b), respectively], indicative of disordered porous struc-
tures, as confirmed by their TEM images [Figs. S1(c) and
S1(d), respectively].

Figure 6(a) displays the N2 sorption isotherms recorded to
investigate the porous structures of these porous carbons. All
featured typical type-IV curves and H1-like hysteresis loops.
Sharp capillary condensation steps occurred in the relative
pressure (P/P0) range from 0.8 to 1.0, suggesting that the
porous structures possessed large and cylindrical pores, con-
sistent with the SAXS patterns and TEM images. Figure 6(b)
reveals that the average pore size distributions, determined
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Table 1 Properties of macro/
mesoporous carbons templated by
CEC triblock copolymer in this
study

Phenolic/CEC d spacing

(nm)SAXS
Pore Size

(nm)BET
Pore Size

(nm)TEM
SBET
(m2/g)

VTotal

(cm3/g)

VMeso

(cm3/g)

80/20 96.6 68.4 ± 7.8 55.4 ± 7.2 393.1 0.23 0.07

70/30 61.6 57.2 ± 14.4 39.9 ± 4.0 384.0 0.23 0.07

60/40 59.2 57.2 ± 14.4 51.2 ± 4.8 336.5 0.21 0.07
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using the Harkins and Jura model, of the porous carbons de-
rived from the phenolic/CEC = 80/20, 70/30, and 60/40
blends were 68.4, 57.2, and 57.2 nm, respectively. Table 1
summarizes the d-spacings, pore sizes, surface areas, and pore
volumes of these macro/mesoporous carbons.

We also used FE-SEM to observe the pore structures in the
macro/mesoporous carbon obtained from the phenolic/CEC= 60/
40 blend. Figures 7(a) and 7(b) display top and side views; the
short-range order of the macroporous structure is evident in
Figs. 7(c) and 7(d). The mean pore size determined from the
SEM images was 54.4 ± 10.6 nm (Fig. S2), close to those deter-
mined through BET analysis (57.2 ± 14.4 nm) and TEM imaging
(51.2 ± 4.8 nm) of the same macro/mesoporous carbon. Thus, we
conclude that both macro and mesoporous carbons were formed
from the phenolic resin templated by our high-molecular-weight
CEC triblock copolymer.

Raman spectroscopic, CO2 capture, and
electrochemical analyses of macro/mesoporous
carbons

To further examine these macro/mesoporous carbons, we used
Raman spectroscopy to investigate their intrinsic properties.
The degree of graphitization can be determined roughly from
the ratio of the intensities of the D- and G-bands (ID/IG), where
the G-band is the signal of the sp2-hybridized C–C bonds near
1587 cm−1. Figure 8 presents the Raman spectra of our macro/

Fig. 7 FE-SEM images of the
macro/mesoporous carbon de-
rived from the phenolic/CEC =
60/40 blend: (a, b) top and (c, d)
cross-sectional views
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mesoporous carbons. The ID/IG ratios obtained from curve
fitting of the spectra of the macro/mesoporous carbons derived
from the phenolic/CEC = 80/20, 70/30, and 60/40 blends were
2.14, 2.34, and 2.51, respectively, suggesting that the structure
of macro/mesoporous carbon from phenolic/CEC = 60/40
blend was much defected when compared with the other two
macro/mesoporous carbons.

Their macro/mesoporous structures and high surface areas
suggested that these macro/mesoporous carbons would be suit-
able for CO2 capture. Figure 9 displays the CO2 adsorption iso-
therms recorded at 298 and 273 K, respectively. The CO2 capture
capacities of the macro/mesoporous carbons obtained from the
phenolic/CEC= 80/20, 70/30, and 60/40 blends were lower at
298 K (2.53, 2.43, and 2.33 mmol g−1, respectively) than they
were at 273 K (2.64, 2.68, and 4.42 mmol g−1, respectively).
More interestingly, the macro/mesoporous carbon derived from
the phenolic/CEC = 60/40 blend exhibited [Fig. 9(b)] a much
higher CO2 uptake (4.42 mmol g−1) at 273 K when compared
with the other two macro/mesoporous carbons measured at the
same temperature. We used the Clausius–Clapeyron equation2 to
calculate the heats of adsorption (Qst) based on the CO2 uptake
data measured at 298 and 273 K. Again, the highest value of Qst

(37.12 kJ mol−1) was that for the macro/mesoporous carbon ob-
tained from the phenolic/CEC = 60/40 blend; the other two
macro/mesoporous carbons derived from the phenolic/CEC=
70/30 and 80/20 blends gave values of 18.02 and
8.23 kJ mol−1, respectively, at 1.0 mmol g−1. We suspect that
the more highly defected structure of the macro/mesoporous car-
bon obtained from the phenolic/CEC= 60/40 blend may have
been responsible for the larger value of Qst for its CO2

uptake.47–49

It is essential that macro/mesoporous carbons developed for
energy storage display high efficiencies. Herein, we selected the
macro/mesoporous carbon derived from the phenolic/CEC= 60/
40 blend for examination of its electrochemical performance in a
three-electrode cell containing 1.0 M KCl as a green medium.50

These conditions provides an extremely wide potential window
for the CV curves (from −1.0 to +1.0 V) recorded for this macro/
mesoporous carbon [Fig. 10(a)]. The CV curves revealed the
behavior of a wide electric double layer capacitor (EDLC) with
only the minor effect of a pseudocapacitor (PC); a much higher
area of the EDLC was evident at all scan rates [Fig. 10(b)]. The
capacitance value at 5 mV s−1 reached 90 F g−1 for this macro/
mesoporous carbon. This high EDLC performance was presum-
ably related to the major effect of the carbonization procedure in
providing a high surface area for electron transfer on the electrode
surface.We recorded the charge/discharge curves (CDC) at 2.0 A
g−1 over the potential range from−1.0 to +1.0V. TheCDCcurves
were typically symmetrical, suggesting that the hybridization did
not induce a resistive structure [Fig. 10(c)]. The electrodes
displayed efficient stability at 2.0 A g−1 for 5000 cycles with
95% retention, as well as approximately 100% columbic efficien-
cy [Fig. 10(d)]. Comparedwith other porous carbons, these results

were characterized by exceptionally negligible IR drop curves
having excellent symmetrical triangular shapes and a wide poten-
tial range. Furthermore, other porous carbons have not displayed
such strong performance. In other words, these results suggest
performance higher than that of other phenolic carbons used for
energy storage (e.g., lignin-derived porous carbons have reached
a specific capacitance of 100 F g−1 at 5 mV). Thus, our results are
competitive with those of other reported structures having similar
components.51, 52 Wang et al. investigated the performance of an
activated carton box having a surface area of greater than 2700m2

g−1 and obtained a capacitance that decreased significantly in
terms of its retention and cycling abilities.53 Besides, Zhao et al.
are also much higher than other activated bamboo-like carbons
composited with metal oxides (e.g., V2O5).

54 Table S1 summa-
rizes the performance of other comparable materials. Indeed, our
macro/mesoporous carbon derived from the phenolic/CEC= 60/
40 blend appears to be a promising candidate material for energy
storage applications.

Conclusion

We have synthesized ultralarge-pore mesoporous carbons when
using the high-molecular-weight triblock copolymer CEC as a
single template for resol acting as the carbon source. Competing
hydrogen bonding interactions in the phenolic/PEO and phenolic/
PCL phases induced the self-assembly of cylinder or spherical
micelles from the CEC/resol blends. After carbonization, we ob-
tained ultralarge-pore carbons having macroporous (>50 nm)
structures and high surface areas (> 400 m2 g−1), suitable for
use in CO2 uptake and supercapacitor applications. The higher
degree of defects (determined fromRaman spectral analyses, with
a higher value of ID/IG) in the structure of the macro/mesoporous
carbon derived from the phenolic/CEC = 60/40 blend
corresponded to a greater value of Qst for its CO2 uptake, and
also to its highly efficient capacitance behavior (90 F g−1 at
5 mV s−1) and excellent stability (95% after 5000 cycles). Thus,
this simple approach allows the preparation of ultralarge-pore
mesoporous carbons, templated by a high-molecular-weight tri-
block copolymer that mediated competing hydrogen bonding in-
teractions, suitable for CO2 uptake and electrochemical
applications.
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