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A B S T R A C T   

In this study we prepared cyanate ester–functionalized double-decker silsesquioxane (DDSQ) nanoparticles 
through a sequence of hydrosilylation of nadic anhydride (ND) with DDSQ and then treat with 4-aminophenol to 
provide DDSQ-ND-OH, and reaction with cyanogen bromide (BrCN) to form DDSQ-ND-OCN (a bis-phenyl 
cyanate ester DDSQ). After thermal curing of DDSQ-ND-OCN, we obtained mesoporous poly(cyanate ester) 
(PCE)/DDSQ frameworks that displayed high thermal stabilities and char yields since the inorganic DDSQ 
nanoparticles were dispersed in the PCE matrix homogeneously, as revealed using electron microscopy. Thermal 
polymerization at 210 �C provided a PCE/DDSQ framework having a thermal decomposition temperature 
(516 �C) and char yield (70 wt%); these values increased to 600 �C and 81 wt%, respectively, after thermal 
treatment at 420 �C. More interestingly, these mesoporous PCE/DDSQ frameworks displayed electrochemical 
properties better than those of other non-carbonized materials.   

1. Introduction 

Polycyanates are used widely in high-performance and functional 
materials, including composite resin substrates and digital printed cir-
cuit boards, because of their low dielectric constants, excellent heat 
resistance, low moisture absorption, and volume shrinkage [1–3]. A 
large number of commercially available cyanate resins are bisphenol 
A–type cyanate resins, because their industrial synthesis is simple and 
their raw materials are available cheaply. The main disadvantage of 
such dicyanate resins is that they become brittle after thermal hardening 
[4,5]. First stable aromatic dicyanate was synthesized by Gripat et al. 
from a phenol and a cyanogen halide [1]. Several related products have 
been proposed for real industrial applications. Polycyanate resins can be 
prepared through heat-curing of dicyanate monomers; the hardening 
reaction occurs mainly through polycyclotrimerization to form a 
cross-network structure. The pure cyanate does not react when heated. 
Bauer et al. suggested that the cyanate reactant must contain a small 
amount of residual phenol or water as a residual impurity that can 

catalyze the cyclization reaction [6]. Gupta and Macosko heated a 
monofunctional 2-(4-cyanatophenyl)-2-phenylpropane to obtain a 
para-form product; polycondensation was presumably the main reaction 
that led to the formation of an s-triazine in a yield of greater than 90% 
[7]. 

A typical type of poly(cyanate ester) (PCE) is that synthesized from 
bisphenol A and cyanogen bromide; this material displays the thermal 
decomposition temperature (Td) of 411 �C and the char yield of 41 wt%.1 

Many approaches have been examined to improve the physical prop-
erties of PCEs for example, introducing reactive functional groups into 
the cyanate ester monomers [8–10] and mixing inorganic nanoparticles 
[e.g., polyhedral oligomeric silsesquioxane (POSS), carbon nanotubes, 
clay, graphene] into the PCE matrix [11–16]. In general, the incorpo-
ration of POSS into a polymer improves the thermal stability, increases 
the oxidation resistance, decreases the flammability, and lowers the 
surface free energy [17–23]. The inorganic POSS nanoparticles in such 
polymer/POSS hybrids can be positioned at the side chains or chain ends 
through reactions of mono-functionalized POSS compounds [24–30]. 
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Insoluble cross-linked polymers have been obtained when reacting 
multi-functionalized POSS compounds (with greater than two functional 
units) [31–33]. Furthermore, bifunctionalized POSS derivatives 
including double-decker–shaped polyhedral silsesquioxanes (DDSQs) 
have been developed to produce new main chain type polymer/POSS 
nanocomposites for polyurethane, polyimide, and polybenzoxazine 
matrices [34–41]. Because DDSQs possess hollow and bulky structures, 
they can increase the free volume of a polymer and lower its dielectric 
constant [34–41]. Furthermore, because they are highly thermally sta-
ble, it is expected that introducing inorganic DDSQ cage structures 
(through covalent bonding or dispersion) should enhance the thermal 
properties of conventional PCE matrices. 

In this study, we introduced DDSQ nanoparticles into a PCE matrix to 
form a new organic/inorganic hybrid (Scheme 1). We first synthesized a 
bifunctional phenolic DDSQ derivative [Scheme 1(a)–(e)] and then 
formed a bifunctional cyanate ester DDSQ (DDSQ-ND-OCN) through a 
reaction with cyanogen bromide (BrCN) [Scheme 1(f)]. Mesoporous 
PCE/DDSQ frameworks were obtained after thermal curing, where ring 
cyclotrimerization of the OCN units created a high concentration of s- 
triazine rings linked through ether units to the benzene rings of the 
bisphenol DDSQ (Scheme 2). The chemical structure of the monomer 

DDSQ-ND-OCN was confirmed by Fourier transform infrared (FTIR) 
spectroscopy, NMR spectroscopy, and mass-analyzed laser desorption/ 
ionization time-of-flight (MALDI-TOF) mass spectrometry. 

2. Experimental section 

2.1. Materials 

Phenyltrimethoxysilane, platinum divinyltetramethyldisiloxane 
complex [Pt(dvs)], methyl dichlorosilane, 2-propanol, tetrahydrofuran 
(THF), sodium hydroxide (NaOH), charcoal, and magnesium sulfate 
(MgSO4) were purchased from Alfa–Aesar. Nadic anhydride (ND), 4- 
aminophenol, cyanogen bromide (BrCN), ethanol (EtOH), methanol 
(MeOH), sodium bicarbonate (NaHCO3), acetonitrile, and cyclohexane 
were purchased from Sigma–Aldrich. DDSQ-ND-OH was synthesized as 
described previously [Scheme 1(e)] [34,35]. 

2.2. Synthesis and thermal curing of the bisphenyl cyanate ester double- 
decker silsesquioxane (DDSQ-ND-OCN) 

DDSQ-ND-OH (4.5 g, 2.7 mmol) and BrCN (0.85 g, 8.1 mmol) were 

Scheme 1. Synthesis of the monomer DDSQ-ND-OCN (f) from (a) phenyltrimethoxysilane, (b) DD-Na, (c) DDSQ, (d) DDSQ-ND, and (e) DDSQ-ND-OH.  

Scheme 2. (a) Chemical structure of DDSQ-ND-OCN; (b) thermal trimerization of DDSQ-ND-OCN at 210 �C for 2 h; (c) mesoporous PCE/DDSQ framework after 
thermal treatment at 420 �C for 6 h. 
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placed under a blanket of N2. THF (20 mL) was added dropwise while 
stirring vigorously. The solution was cooled to � 30 �C and then trie-
thylamine (0.42 mL) was added dropwise over 30 min. The temperature 
was maintained at � 20 �C by immersion in a Dewar flask containing a 
MeOH/liquid N2 mixture. The reaction was complete after 4 h. The 
white salt was filtered off. Ice water (500 mL) was added to the filtrate to 
give a red precipitate. This crude product was recrystallized (cyclo-
hexane) to give a pink powder (3.69 g, yield: 82%). The DDSQ-ND-OCN 
monomer was placed in the aluminum pan and then subjected to ther-
mal curing for 2 h at various temperatures (90, 150, 180, and 210 �C) to 
give PCE/DDSQ hybrid. Then, the PCE/DDSQ hybrid was subjected to 
thermal treatment at 420 �C for 6 h to afford mesoporous PCE/DDSQ 
framework (3.00 g, yield: 82%). 

3. Results and discussion 

3.1. Synthesis of the DDSQ-functionalized benzoxazine monomer 

Scheme 1 shows the synthesis of the DDSQ-ND-OCN monomer. The 
chemical structure of each intermediate was confirmed by MALDI-TOF 
mass spectrometry and 1H NMR and FTIR spectroscopy. Fig. 1 pro-
vides FTIR spectra of each compound obtained during the preparation of 
the monomer DDSQ-ND-OCN. The spectrum of each DDSQ compound 
featured a strong signal for the Si–O–Si units at 1097 cm� 1 and a weak 
signal at 1261 cm� 1 for the SiCH3 units. Furthermore, a signal at 
2172 cm� 1, representing Si–H stretching, appeared for pure DDSQ 
[Fig. 1(a)], but it disappeared after the hydrosilylation of ND with 
DDSQ. Fig. 1(b) reveals that two new signals appeared at 1782 and 
1860 cm� 1, representing the anhydride C––O groups of DDSQ-ND, 
confirming the success of the hydrosilylation. The DDSQ-ND-OH spec-
trum [Fig. 1(c)] reveals signals for the C––O imide units at 1700 and 
1771 cm� 1, a broad signal centered at 3395 cm� 1 for the OH units, and a 
signal at 1390 cm� 1 for the CN units; these shifts to lower wavenumbers 
for the signals of the C––O and OH units are consistent with the DDSQ- 
ND-OH formation [35]. Fig. 1(d) reveals that the signals for imide C––O 
absorption had red-shifted to 1709 and 1772 cm� 1 and that signals for 
OCN units appeared at 2277, 2239, and 2201 cm� 1 [4,42], confirming 
the formation of the monomer DDSQ-ND-OCN. 

Fig. 2 presents 1H and 13C NMR spectra of DDSQ-ND-OH and DDSQ- 
ND-OCN. 1H NMR spectrum of DDSQ-ND-OH [Fig. 2(a)] features the 
aromatic proton signals of the 4-aminophenol units at 6.80 (k) and 6.24 

(l) ppm (Scheme S1) and a broad signal near 5.33 ppm for the OH units 
[35]. This signal for the phenolic OH protons was disappeared by 1H 
NMR spectrum of the monomer DDSQ-ND-OCN [Fig. 2(b)]. Similarly, 
the 13C NMR spectrum of DDSQ-ND-OH features a signal at 156.9 ppm 
for *CAR-OH units [Fig. 2(c)]; this signal shifted to 152.7 ppm for the 
*CAR-OCN units, while a new signal appeared at 108.8 ppm for the O*CN 
units, in the 13C NMR spectrum of DDSQ-ND-OCN [Fig. 2(d)]. Fig. S1 
displays the MALDI-TOF mass spectrum of DDSQ-ND-OCN, with its 
molecular ion located at m/z 1737, consistent with the structure of this 
DDSQ derivative. Thus, the FTIR, NMR, and mass spectra confirmed the 
synthesis of the monomer DDSQ-ND-OCN. 

3.2. Thermal curing behavior of the monomer DDSQ-ND-OCN 

We used DSC to examine the thermal polymerization of the monomer 
DDSQ-ND-OCN. Fig. 3(A) displays DSC thermograms of the monomer 
DDSQ-ND-OCN after applying each thermal polymerization procedure. 
The uncured monomer DDSQ-ND-OCN provided the thermal curing 
exothermic peak at 205 �C and the reaction heat of 33.4 J/g [Fig. 3(A)– 
(a)]. This reaction heat of DDSQ-ND-OCN was decreased with the in-
crease of the thermal curing temperature (Fig. S2). This exothermic peak 
was totally disappeared as the thermal curing temperature was higher 
than 210 �C [Fig. 3(A)–(e)], suggesting that the thermal polymerization 
temperature of DDSQ-ND-OCN was greater than 210 �C. The thermal 
polymerization behavior of DDSQ-ND-OCN was confirmed through FTIR 

Fig. 2. (a, b) 1H and (c, d) 13C NMR spectra of (a, c) DDSQ-ND-OH and (b, d) 
the monomer DDSQ-ND-OCN. 

Fig. 1. FTIR spectra recorded at room temperature of (a) DDSQ, (b) DDSQ-ND, 
(c) DDSQ-ND-OH, and (d) the monomer DDSQ-ND-OCN. 
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spectral analyses [Fig. 3(B)]. These intensities of the characteristic ab-
sorption peaks of the uncured DDSQ-ND-OCN at 2277, 2239, and 
2201 cm� 1 decreased gradually with the increase of thermal polymeri-
zation temperature and completely disappeared as the thermal poly-
merization temperature was 210 �C [Fig. 3(B)–(e)]. This behavior is 
consistent with the OCN groups forming triazine units after thermal 
curing at 210 �C to obtain a highly crosslinked PCE/DDSQ hybrid, 
without the need for a catalyst. 

Fig. 4 displays the corresponding TGA spectra of DDSQ-ND-OCN 
after each thermal curing process. The value of Td (10 wt% loss) and 
the char yield of the monomer DDSQ-ND-OCN were 515 �C and 68 wt%, 
respectively, confirming its high thermal stability. After thermal curing 
at 210 �C, the value of Td and the char yield increased to 526 �C and 
72 wt%, respectively, because the formation of triazine units increased 
the crosslinking density [Scheme 2(b)]; these two values increased 
significantly to 600 �C and 81 wt%, respectively, after thermal treatment 
at 420 �C, due to the formation of a mesoporous PCE/DDSQ framework 

having a hexagonal structure [Scheme 2(c)]. 
Nevertheless, although the latter value of Td was 600 �C, the onset 

temperature for thermal degradation of that mesoporous PCE/DDSQ 
framework was approximately 500 �C. We recorded N2 isotherm sorp-
tion curves to examine the surface areas and pore sizes of the meso-
porous PCE/DDSQ frameworks obtained after thermal treatment at 420 
and 500 �C [Fig. 5(a)]. A typical type-IV with H1 type of hysteresis loop 
appeared for the mesoporous PCE/DDSQ framework after thermal 
treatment at 420 �C, suggesting the presence of cylindrical pores. The 
pore size and surface area of this mesoporous PCE/DDSQ framework, 
measured using the BJH method, was greater than 2 nm (average pore 
size: 5.6 nm) and 392 m2 g� 1, respectively [Fig. 5(b)]. In contrast, the 
sorption/desorption curve collapsed and, thus, the surface area 
decreased to 235 m2 g� 1 and the pore size distribution could not be 
determined for the mesoporous PCE/DDSQ framework after thermal 
treatment at 500 �C, implying that the hexagonal porous framework 
structure may have collapsed at this temperature. 

We used XRD, SEM, TEM, FTIR spectroscopy, and solid state NMR 
spectroscopy to examine the change in chemical structure of the meso-
porous PCE/DDSQ framework after thermal treatment at 420 and 
500 �C. Fig. 6(a) displays the XRD pattern of the mesoporous PCE/DDSQ 
framework after thermal treatment at 420 �C; the peak position ratio of 
the values of q were 1:√3:2:√7, indicative of a hexagonally packed 
cylindrical structure and consistent with the apparent micropores in 
TEM images in Fig. 6(b) and (c). The first value of q was located at 0.4 
A� 1, corresponding to a d-spacing of 1.57 nm, based on the Bragg 
equation. Fig. 6(b) also reveals a highly ordered lamellar or layer 
structure for the mesoporous PCE/DDSQ framework. We observed no 
discernible phase separation and a featureless morphology in the SEM 
image of the mesoporous PCE/DDSQ framework [Fig. 6(d)], suggesting 
that the inorganic DDSQ units had dispersed homogeneously in the PCE 
matrix. Fig. 6(e)–(h) display the energy-dispersive X-ray (EDX) Si, C, and 
N spectroscopic mappings of the mesoporous PCE/DDSQ framework; 
they also suggest that inorganic DDSQ units were dispersed well in PCE 
matrix. For example, Fig. 6(e) displays a red point, representing a DDSQ- 
enriched region, that suggests no aggregation of spherical nanoparticles, 
thereby confirming that DDSQ nanoparticles were dispersed well in PCE 
matrix. 

Fig. 3. (A) DSC traces, recorded at heating rate of 20 �C/min with a heat flow (50 mL/min) and (B) FTIR spectra of the monomer DDSQ-ND-OCN: (a) uncured and 
(b)–(e) measured after curing at for 2 h at various temperatures of (b) 120, (c) 150, (d) 180, and (e) 210 �C. 

Fig. 4. TGA traces of the monomer DDSQ-ND-OCN, recorded after each 
curing stage. 
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Furthermore, Fig. 7(a) presents the corresponding XRD pattern of the 
mesoporous PCE/DDSQ framework after thermal treatment at 500 �C; 
the peak ratio of 1:2:√7 also suggests a hexagonally packed cylindrical 
structure, consistent with the TEM images in Fig. 7(b) and (c). Similarly, 
Fig. 7(c) also suggests a highly ordered layer structure for the meso-
porous PCE/DDSQ framework after thermal treatment at 500 �C. No 
obvious phase separation and a featureless morphology appear in the 
SEM image of the mesoporous PCE/DDSQ framework after thermal 
treatment at 500 �C [Fig. 7(d)]. Furthermore, the EDX spectral Si, C, and 
N mappings of the mesoporous PCE/DDSQ framework [Fig. 6(e)–(h)] 
after thermal treatment at 500 �C also imply that the inorganic DDSQ 

units were also dispersed homogeneously. We found, however, that the 
Si concentration increased significantly from 9.97 to 16.23 wt% and the 
C concentration decreased significantly from 42.15 to 36.08 wt% after 
thermal treatment of the mesoporous PCE/DDSQ framework at 500 �C, 
when compared with the sample obtained after thermal treatment at 
420 �C [cf. Figs. 6(h) and 7(h)]. 

Taking into account the chemical structure of the mesoporous PCE/ 
DDSQ framework, we suspect that the aliphatic CH2 units of the ND 
groups may have possessed relatively lower thermal stability, such that 
the hexagonally packed cylindrical porous structure may have collapsed 
as a result of cleavage of some of the C–H or C––O bonds of the ND 

Fig. 5. (a) N2 adsorption/desorption isotherms (adsorption (●, filled cycles) and desorption (○, open cycles) and (b) pore size distributions of DDSQ-ND-OCN after 
thermal treatment at 420 and 500 �C. 

Fig. 6. (a) XRD; (b, c) TEM; (d) SEM; (e) Si, (f) C, and (g) N mapping; and (h) EDX analyses of the monomer DDSQ-ND-OCN after thermal treatment at 420 �C.  
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groups (Scheme S2). We used FTIR spectroscopy and 13C and 29Si solid 
state NMR spectroscopy to investigate the change in the chemical 
structure after thermal treatment at each temperature. Fig. 8(a) presents 
FTIR spectra of the monomer DDSQ-ND-OCN after its thermal treatment 
at various temperatures. The signals for Si–O–Si stretching (at 1089 and 
1130 cm� 1) and Si–CH3 stretching (at 1261 cm� 1) did not change after 
treatment at the various temperatures, suggesting that the inorganic 

DDSQ nanoparticles were not destroyed under high-temperature ther-
mal treatment. New signals for C––N absorption appeared at 1653 and 
1563 cm� 1 [43] consistent with the formation of triazine units and the 
disappearance of the signals for the OCN units in Fig. 3(B). As thermal 
treatment temperature was 420 �C, the FTIR spectrum remained almost 
unchanged relative to room temperature, indicating that the chemical 
structure did not change appreciably; in contrast, the intensity of the 

Fig. 7. (a) XRD; (b, c) TEM; (d) SEM; (e) Si, (f) C, and (g) N mapping; and (h) EDX analyses of the monomer DDSQ-ND-OCN after thermal treatment at 500 �C.  

Fig. 8. (A) FTIR spectra and (B) 13C and (C) 29Si solid state NMR spectra of DDSQ-ND-OCN: (a) uncured and (b)–(d) recorded after thermal treatment at (b) 210, (c) 
420, and (d) 500 �C. 
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signals for the aliphatic CH2 units at 1433 cm� 1 and the C––O units at 
1709 cm� 1 from the ND moieties both decreased after thermal treatment 
at 500 �C. Fig. 8(b) presents the 13C solid state NMR spectrum of the 
monomer DDSQ-ND-OCN after thermal treatment at each temperature. 
After thermal curing at 210 �C, the signal at 116.1 ppm for the O*CN 
units disappeared, consistent with the formation of triazine units. 
Although the signals for the aliphatic carbon nuclei at 41.2 and 
50.3 ppm did not change after thermal curing at 210 �C, they dis-
appeared after thermal treatment at 500 �C, consistent with the FTIR 
spectral analysis. Fig. 8(c) displays the 29Si solid state NMR spectrum of 
the monomer DDSQ-ND-OCN after thermal treatment at each tempera-
ture. The signal of the SiOSi units appeared at � 77.4 ppm and did not 
change after treatment at the different temperatures, suggesting that the 
inorganic DDSQ nanoparticles were not destroyed during 
high-temperature thermal treatment. In contrast, the signals for the Si–C 
units at � 22.4 ppm disappeared after thermal treatment at 500 �C. Thus, 
the FTIR and NMR spectral data in Fig. 8 confirmed that cleavage of 
some of the C–H and C–C bonds of the ND groups occurred during 
thermal treatment at 500 �C (Scheme S2). As a result, the hexagonally 
packed cylindrical porous structure underwent collapse, resulting in a 
lower surface area for the mesoporous PCE/DDSQ framework. 

To investigate the possible applications of these mesoporous PCE/ 
DDSQ frameworks in energy storage, here we tested (Fig. 9) the elec-
trochemical performance of the sample obtained after thermal treatment 
at 420 �C, because of its high surface area and well-defined hexagonal 
porous structure. To our best knowledge, this report is the first to discuss 
the electrochemical performance of such a material. We used a three- 
electrode cell and 1.0 M KCl as a green medium to provide a wide po-
tential window for the CV curves (from � 0.2 V to þ1.0 V). The CV cycles 
revealed a major electric double layer capacitor (EDLC) throughout the 

range from 0.0 to 1.0 V and a minor pseudocapacitance (PC) within the 
range from � 0.25 to 0.0 V [Fig. 9(a)]. This type of hybrid capacitor arose 
because of the chemical structure of the mesoporous PCE/DDSQ 
framework. This hybrid capacitor displayed a specific capacitance of 
20 F g� 1 at 5 mV s� 1 [Fig. 9(b)]. This performance is comparable with 
that of some carbon materials performances-for example, some inter-
calated graphite derivatives that have an achieved specific capacitances 
of 5 F g� 1 at 5 mV s� 1. We also observed efficient symmetrical charge/ 
discharge performances at various tested currents (1–8 μA). These 
values were measured using a tested cell having dimensions of 
0.5 � 0.5 cm2 [Fig. 9(c)]. Moreover, Fig. 9(d) reveals an outstanding 
efficient cycling ability at 13 μA over 4000 cycles, with an excellent 
average capacitance retention of 95% with 100% columbic efficiencies, 
relative to the performance of other non-carbonized materials having a 
similar surface area.44� 50 

4. Conclusions 

We have synthesized the monomer DDSQ-ND-OCN possessing high 
thermal stability after thermal polymerization treatment, the char yield 
increased from 68 to 81 wt% because of high thermal stability of the 
inorganic DDSQ nanoparticles and the formation of triazine units that 
increased the crosslinking density. In addition, the inorganic DDSQ 
nanoparticles were dispersed in PCE matrix homogeneously, as 
confirmed from SEM and TEM analyses revealing a hexagonally packed 
cylindrical porous structure; this porous structure collapsed, however, 
after thermal treatment at 500 �C, due to cleavage of some of the C–H 
and C–C bonds of the ND units. Most interestingly, this mesoporous 
PCE/DDSQ framework exhibited good electrochemical properties, and 
outstandingly efficient cycling ability at 13 μA over 4000 cycles, with an 

Fig. 9. Electrochemical performance of the mesoporous PCE/DDSQ framework: (a) CV traces recorded at scan rates from 5 to 200 mV s� 1; (b) capacitance plotted 
with respect to scan rate; (c) CD traces recorded at various current ranges; (d) capacitance retention at 13 μA over 4000 cycles (average retention: 95%). 
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excellent average capacitance retention of 95% with 100% columbic 
efficiencies, relative to that of other non-carbonized materials having a 
similar surface area. 
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