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We report the reversible surface properties (hydrophilicity, hydrophobicity) of a polybenzoxazine (PBZ) thin film through
simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded
O–H⋅ ⋅ ⋅O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its
hydrophobicity after heating, due to greater O–H⋅ ⋅ ⋅N intramolecular hydrogen bonding. Taking advantage of these phenomena,
we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from
superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

1. Introduction

Surface wettability, which is controlled by the surface energy
and morphology, is an important property for many solid
materials [1–3]. Superhydrophobic and superhydrophilic sur-
faces are defined as having water contact angles (WCAs)
greater than 150∘ and close to 0∘, respectively; they have
been investigated extensively because of their industrial
applicability [4–8]. The preparation of a superhydrophobic
surface requires the combination of a rough structure on a
hydrophobic surface and a lowering of the surface energy
[9, 10]; a superhydrophilic surface can be achieved through
a capillary effect on a hydrophilic surface [11]. Surfaces
exhibiting reversible switching between superhydrophobic-
ity and superhydrophilicity have received much attention;
they have included photoresponsive materials (e.g., ZnO,
TiO
2
, and SnO

2
) [12–16], pH-responsive materials (e.g.,

poly(acrylic acid)) [17, 18], temperature-responsive poly-
mers (e.g., poly(N-isopropylacrylamide)) [19], and electri-
cal potential-responsive conducting polymer films [20, 21].
Among these materials and methods, the use of light to
switch the surfacewettability is particularly attractive because
it can be controlled quickly [22, 23]. Organic compounds
(e.g., azobenzenes) that display reversible structural changes
triggered by light are employed most commonly [24, 25].

Benzoxazine monomers are heterocyclic compounds fea-
turing an oxazine ring; they are synthesized from a primary
amine, phenol, and formaldehyde. Benzoxazines can be
polymerized through ring-opening polymerization in the
absence of a catalyst, releasing no byproducts [26–28]. Ben-
zoxazine resins have several attractive properties: near-zero
shrinkage upon polymerization, low water absorption, high
char yield, excellent dimensional stability, flame retardance,
stable dielectric constants, and low surface free energies [26–
33]. Polybenzoxazines (PBZs) are a relatively new class of
nonfluorine, nonsilicon polymeric materials that exhibit low
surface free energies as a result of strong intramolecular
hydrogen bonding [34]; they have a wide range of applica-
tions as superhydrophobic surfaces [35–39] in lithographic
patterning [40] and asmold-releasematerials in nanoimprint
technology [41].

Macko and Ishida reported that carbonyl-containing
species were formed when a PBZ based on bisphenol A
was exposed to UV radiation under ambient conditions.
The 2,6-disubstituted benzoquinone moieties released from
the isopropylidene linkages of PBZ are the primary reactive
sites where oxidation and cleavage occur upon UV expo-
sure. These benzoquinone moieties decrease the fraction
of intramolecular hydrogen bonding while increasing the
fraction of intermolecular hydrogen bonding [42, 43]. Liao
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et al. reported that the surface properties of PBZ become
hydrophilic upon decreasing the fraction of intramolecular
hydrogen bonds after UV exposure. Our motivation for this
studywas to testwhetherwe could obtain reversible switching
of the surface properties—between superhydrophobicity and
superhydrophilicity—of a PBZ thin film [40].

Reversible transitions from superhydrophobicity to
superhydrophilicity have been observed previously for
aligned ZnO nanorod films through intelligent control over
alternating UV illumination and dark storage [12, 13]. In
addition, a photo-switched azobenzene thin film displaying
a superhydrophobicity-to-superhydrophilicity transition
has been realized, controlled through UV and visible
irradiation [24, 25]. Hou and Wang reported that a poly-
styrene/titania (TiO

2
) hybrid could also be adjusted from

superhydrophilicity to superhydrophobicity by alternating
UV illumination and thermal treatment with different drying
temperatures [44]. Similar behavior has also been reported
for a methylsilicone/phenolic resin/silica composite surface
[45].

In this study, we observed reversible surface properties,
controlled through alternating UV illumination and thermal
treatment at different temperatures, of a pure PBZ thin film.
Taking advantage of these phenomena, we also prepared a
PBZ/silica nanocomposite coating through two simple steps,
using a previously reported procedure [35]; this material also
exhibited reversible transitions from superhydrophobicity
to superhydrophilicity upon sequential UV irradiation and
thermal treatment.

2. Experimental

2.1. Materials. Paraformaldehyde and allylamine were pur-
chased from Tokyo Kasei Kogyo (Japan). Bisphenol A was
supplied by the Showa (Japan). The benzoxazine monomer
VB-a was prepared according to reported procedures [46,
47]. Column chromatography (eluent: EtOAc/hexane, 2 : 1)
was used to separate the impurities, which were identified as
unreacted phenols, amines, and benzoxazine oligomers. Sil-
ica nanoparticles (Tokusil 233G; 22-nm precipitated hydrated
silica) were kindly provided by the Oriental Silicas (Taiwan).

3. Thin-Film Formation and Polymerization

A low-surface-energy thin film of PBZ was prepared from
a solution of the VB-a monomer (0.5 g) in THF (10mL)
that was filtered through a 0.2 𝜇m syringe filter and then
spin-coated in a glass slide (100 × 100 × 1mm), which was
then cured in an oven at 200∘C. A superhydrophobic coating
comprising PBZ and silica nanoparticles on a glass slide was
formed through a two-step process. First, VB-a benzoxazine
(0.5 g)wasmixedwith the silica nanoparticles (0.75 g) in THF
(10mL). After ultrasonication in a bath for 2 h, the mixture
was spin-coated (1500 rpm, 45 s) in a glass slide (100 × 100 ×
1mm) and then cured in an oven (200∘C, 1 h). Subsequently,
the PBZ-silica hybrid surface was modified with 0.1% (w/v)
VB-a PBZ film. The VB-a benzoxazine solution was spin-
coated (1500 rpm, 45 s) in a rough surface and then cured

(210∘C, 1 h). To produce a hydrophilic surface, the VB-a
PBZ thin film was exposed (ca. 120min) through a mask
to UV radiation (265 nm) at a distance of 25 cm from the
source, receiving 30W/m2 of radiation. The sample was
then thermally cured at different temperatures in an oven
to reform the superhydrophobic surface. To investigate the
effects of thermal treatment, the temperature was set at 80,
100, 120, 140, 160, 180, or 200∘C.

4. Characterization

A Data Physics OCA20 goniometer interfaced to image-
capture software was used to measure the advancing contact
angles of the samples at 25∘C; a liquid drop of deionized
water was injected in the polymer surface. Surface roughness
profiles of the film structures were acquired using a NT-
MDT solver PRO-M scanning probe microscope operated
in the tapping mode. Root-mean-square (rms) roughnesses
were calculated over scan areas of 5𝜇m × 5 𝜇m.The chemical
composition of the as-prepared surface was investigated
through X-ray photoelectron spectroscopy (XPS) using a
PHI 5000 VersaProbe electron spectrometer and an AlKR
line excitation source with the reference of C

1s at 285.00 eV.
The microstructures of the polymer surface and the mold
were characterized using a JEOL JSM-6380 scanning electron
microscope.

5. Results and Discussion

For the VB-a monomer system that had been heated at var-
ious curing temperatures (Figure 1(a)), the WCA increased
upon increasing the curing temperature, from 82∘ at 80∘C
to 103∘ at 200∘C, similar to the behavior of a previously
reported BA-a PBZ system [29]. Figure 1(b) reveals that the
WCA of the VB-a PBZ films decreased upon increasing
the UV exposure time. After UV exposure for longer than
120min, the WCA reached very close to 0∘, corresponding
to a superhydrophilic surface. This behavior arose due to the
partial decrease in the degree of intramolecular hydrogen
bonding and a corresponding increase in the degree of
intermolecular hydrogen bonding, thereby resulting in a
higher surface free energy and a greater hydrophilicity [40].
Liao et al. reported a simple method using a photomask to
produce wettability patterns and wettability gradients on the
surfaces of PBZ films; they also suggested that the surface
free energy and hydrophilicity of these PBZ films could be
controlled through a combination of thermal treatment and
UV exposure to change the ratio of intra- to intermolecular
hydrogen bonds [40].

Figure 2 displays the effects on theUV-exposed PBZ films
after thermal treatment at various temperatures. Surprisingly,
the WCA increased upon increasing the thermal treatment
temperature, from 1.5∘ at 80∘C to 102.9∘ at 200∘C, behavior
that is very similar to that observed after the first thermal
curing procedure at 200∘C. The wettability of this PBZ film
revealed a transition from hydrophilicity to hydrophobicity
upon increasing the thermal treatment temperature. Again,
we usedWCAs tomeasure the reversible switching of the PBZ
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Figure 1: Variations in WCA after (a) the first thermal curing of the VB-a monomer at various temperatures and (b) the first UV exposure
for various lengths of time.
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Figure 2: Variation in WCA after performing the second thermal treatment at various temperatures.
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Figure 3: (a) Photographs of a water droplet on the PBZ coating
before (left) and after (right) UV illumination. (b) Reversible
hydrophobic-hydrophilic transitions of the as-prepared coatings
through sequential alternating of UV irradiation and thermal
treatment.

film between its hydrophilic and hydrophobic states. Figure 3
displays a WCA of approximately 100∘ for the PBZ film after
initial thermal treatment at 200∘C. After UV irradiation for
2 h, the WCA decreased to 2 ± 2∘, a clear transformation
in the wettability of this PBZ film from hydrophobicity to
hydrophilicity. After UV exposure, we heated this sample
again at 200∘C for 1 h, regaining the hydrophobicity of its
surface. We could repeat this process several times, obtaining
good reversibility of the surface wettability. To determine
the factors responsible for these transitions, we used XPS to
investigate the chemical structures of the surface components
of the PBZ films.

Figures 4 and 5 present XPS analyses of the compositions
of a PBZ film after alternating UV illumination and thermal
treatment. Table 1 lists the peak assignments of the C 1s andO
1s signals as well as the curve fitting data [48, 49]. Let us first
consider the C=O peaks in both the C 1s (288.5 eV) and O 1s
(531.4 eV) spectra in Figures 4 and 5. After the first thermal
treatment procedure, the C=O peaks were not detectable in
either the C 1s or O 1s spectrum; the area fractions of the C=O
peaks increased, however, after UV irradiation. For example,
the area fraction of the C=O peak at 288.5 eV in Figure 4(b)
increased significantly (to 16.62%) afterUV exposure, relative
to that in Figure 4(a) withoutUV exposure.This result is con-
sistent with Ishida’s report: that carbonyl-containing species
are formed when bisphenol A-based PBZ is exposed to UV
radiation [17]. These benzoquinone moieties decrease the

fraction of intramolecular hydrogen bonds while increasing
the fraction of intermolecular O–H⋅ ⋅ ⋅O=C hydrogen bonds,
thereby inducing a hydrophilic surface for the PBZ film.
After we subjected the UV-exposed PBZ film to thermal
treatment, the area fraction of the C=O peak at 288.5 eV
decreased (to 9.18%; Figure 4(c)). Again, decreasing the
fraction of intermolecular hydrogen bonding enhanced the
hydrophobic surface properties. Finally, a further application
ofUV exposure significantly increased the area fraction of the
C=Opeak at 288.5 eV (to 19.14%; Figure 4(d)), again inducing
hydrophilic surface properties. Figure 5 reveals similar trends
for the C=O peaks in the O 1s spectra.

The physical interactions among the PBZ polymer chains,
mainly through intramolecular hydrogen bonding of the OH
groups with the nitrogen atoms, as depicted in Scheme 1,
have a critical effect on the properties of these materials [40].
Let us turn our attention to the fraction of intramolecularly
hydrogen bonded O–H⋅ ⋅ ⋅N units in the PBZ film, based
on Figure 5. The signal at 536.5 eV for the intramolecularly
hydrogen bonded O–H⋅ ⋅ ⋅N units in the PBZ film disap-
peared after UV exposure (area fraction: 0%; Figure 5(b)),
relative to its value of 5.63% in Figure 5(a) for the sample
that had not been subjected to UV exposure. After thermal
treatment of the UV-exposed PBZ film, the area fraction of
the O–H⋅ ⋅ ⋅N peak at 536.5 eV in Figure 5(c) increased again
to 3.05%; increasing the fraction of intramolecular hydrogen
bonds again enhanced the hydrophobic surface properties.
Finally, further UV exposure resulted again in the disappear-
ance of the O–H⋅ ⋅ ⋅N peak in Figure 5(d) (area fraction: 0%),
thereby inducing hydrophilic surface properties once again.
Therefore, the reversible switching of the wetting behavior of
the PBZ film arose from the reversible chemical structures
formed (cf. Scheme 1) upon alternating UV illumination and
thermal treatment. Decreasing the fraction of intramolecular
hydrogen bonds while increasing the fraction of intermolec-
ular hydrogen bonds through UV exposure, as a means of
inducing hydrophilic surface properties for PBZ films, has
been widely discussed previously [15]. In this present case,
our XPS analyses suggested that the reversible switching
of the surface properties appeared to arise from a partial
increase in the fraction of intramolecularly hydrogen bonded
O–H⋅ ⋅ ⋅N units after UV exposure and a partial decrease
in the fraction of intermolecularly hydrogen bonded O–
H⋅ ⋅ ⋅O=C units after subsequent thermal treatment.

Table 2 lists the atomic percentages in the coatings after
treatment under the various conditions. The ratio of N
atoms was 1.5% after the first thermal treatment procedure;
it increased to 4.9% after the first UV exposure. Because
these N atoms each have a lone pair of electrons, they would
undergo intermolecular interactions with water; therefore,
we would expect a higher percentage of N atoms on the
surface to induce hydrophilicity. After we had heated the
UV-irradiated coating at 200∘C for 1 h, the ratio of N atoms
decreased, consistent with the hydrophilic surface becoming
hydrophobic once again. After a second bout of UV exposure,
the ratio of N atoms increased again, thereby again inducing
the hydrophilic surface properties.

The ability to control the WCA of this PBZ surface
through irradiation with UV light suggested the intriguing
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Figure 4: XPS spectra (C 1s peaks) of the PBZ film after its (a) first thermal treatment at 200∘C for 1 h, (b) first UV irradiation for 2 h, (c)
second thermal treatment at 200∘C for 1 h, and (d) second UV irradiation for 2 h.

possibility of using this system to prepare materials with
properties varying from superhydrophobicity and superhy-
drophilicity. Toward this goal, we used a simple two-step
method to prepare a PBZ/silica nanocomposite coating,
based on a previously reported procedure [35]. We obtained
a superhydrophobic coating of this material on a glass slide
after combining the VB-a benzoxazine monomer with silica
nanoparticles in solution, spin-coating in a glass slide, and
then curing. We then further modified the resulting rough
surface of the PBZ-silica hybrid thin film with a thin film of
the pure VB-a PBZ.

Figure 6(a) presents top-view scanning electron micro-
scopy (SEM) images of the as-prepared super-hydrophobic
surface on a glass slide. This superhydrophobic PBZ surface
had a rough surface possessing both micro- and nanoscale
binary structures. Each microisland (300–700 nm) on the
PBZ surface was covered with nanospheres (20–60 nm); this
structure dramatically increased the surface roughness and
formed composite interfaces in which air could become
trapped within the grooves beneath the liquid, thereby
inducing superhydrophobicity. The inset to Figure 6(a) dis-
plays a spherical water droplet having a WCA of 158∘ on
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Figure 5: XPS spectra (O 1s peaks) of the PBZ film after its (a) first thermal treatment at 200∘C for 1 h, (b) first UV irradiation for 2 h, (c)
second thermal treatment at 200∘C for 1 h, and (d) second UV irradiation for 2 h.
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Figure 6: SEM images of the PBZ-silica hybrid surface modified with VB-a PBZ (a) before and (b) after UV exposure. Inset: photograph of
a water droplet on the surface.
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Figure 7: WCAs of the PBZ-silica hybrid surface modified with VB-a PBZ after the first UV exposure process for various lengths of time.

this surface. After UV exposure for longer than 60min,
this WCA reached very close to 0∘, corresponding to a
superhydrophilic surface (Figure 7). Again, we believe that
a partial decrease in the degree of intramolecular hydro-
gen bonding and a corresponding partial increase in the
fraction of intermolecular hydrogen bonding resulted in a
higher surface free energy and, therefore, a higher degree of
hydrophilicity in the PBZ/silica hybrid system. In addition,
this superhydrophilic PBZ surface had the same rough sur-
face, possessing bothmicro- and nanoscale binary structures,
as that of the superhydrophobicmaterial (cf. Figures 6(b) and
8); thus, the morphology did not change after UV exposure
or thermal treatment, as confirmed through AFM analyses.

The WCA of the PBZ surface after thermal treatment was
153 ± 3.2

∘; subsequent UV exposure decreased the WCA to
12 ± 2.3

∘, but it returned to the superhydrophobic state after
thermal treatment once again. We could repeat the reversible
switching of the surface wettability several times with good
reversibility (Figure 9).

In order to realize the wetting phenomena between water
droplet and PBZ/silica nanocomposite coating, we measured
the advancing and receding contact angles (ARCA) bymeans
of Needle-Syringe Injection method. In Figure 10, the WCAs
and the Base Diameters (BDs) are plotted against the droplet
volume when the drop is inflated and then deflated. The
sessile drops are inflated with water injection rate of 0.5 𝜇L/s
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Figure 8: AFM images of the PBZ-silica hybrid surface modified with VB-a PBZ after its (a) first thermal treatment at 200∘C for 1 h, (b) first
UV irradiation for 1 h, (c) second thermal treatment at 200∘C for 1 h, and (d) second UV irradiation for 1 h.
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Figure 9: (a) Photographs of a water droplet on the PBZ-silica hybrid surface modified with a VB-a PBZ coating before (left) and after (right)
UV illumination. (b) Reversible superhydrophobic-superhydrophilic transitions of the as-prepared coating upon sequential alternating of
UV irradiation and thermal treatment.

0              2              4              6              8             10

0

20

40

60

80

100

120

140

160

Receding

Advancing

Advancing

C
on

ta
ct

 an
gl

e

Receding

Volume (𝜇L)

0

1

2

3

4

5

BD
 (m

m
)

 1st thermal treatment

(a)

0              2              4             6              8            10

Receding

Receding

Advancing

Advancing

0

1

2

3

4

5

BD
 (m

m
)

Volume (𝜇L)

0

20

40

60

80

100

120

140

160

C
on

ta
ct

 an
gl

e

2nd thermal treatment

(b)

Figure 10: The change of WCA and BD versus the volume as the droplet is inflated and then deflated on the PBZ-silica hybrid surface: (a)
first thermal treatment at 200∘C for 1 h, (b) second treatment at 200∘C for 1 h.

and so are the drops deflated with suction rate of 0.5𝜇L/s.
In Figure 9, most of the static CAs of water droplets with
volume of 3 𝜇L on the PBZ/silica nanocomposite coating
show superhydrophobicity (≧150∘), and it is quite similar to
the WCA of lotus leaf. The high water repellency of lotus leaf
should be attributed to the micro- and nanoscopic structure

of the leaf surface. However, Figure 10 reveals a large WCA
hysteresis in our case of PBZ/silica system. Although the
advancing angle of water drops can be as high as 150∘, the
receding angle gradually decreases to about 60∘ as the drop
volume is deflated to less than 0.5 𝜇L. The WCA hysteresis
is very significant with Δ𝜃 ≧ 90∘ in consequence of the
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Table 1: Fitting data from the XPS analyses.

XPS region Peak assignment Binding energy (eV)
First thermal
treatment

First UV
treatment

Second thermal
treatment Second UV treatment

𝐴

𝑓

(%) 𝐴

𝑓

(%) 𝐴

𝑓

(%) 𝐴

𝑓

(%)

C 1s

COH 284.2 17.67 15.37 13.63 15.08
(CH2)𝑛 284.7 38.54 27.77 33.49 25.60
C=C 285.2 36.47 24.44 31.44 23.46
C–N 286.7 5.5 15.79 10.59 15.70
C=O 288.5 — 16.62 9.18 19.14

O 1s

O⋅ ⋅ ⋅HN 530.8 5.44 — 6.58 —
C=O 531.4 — 25.92 12.21 20.70

O⋅ ⋅ ⋅HO 532.2 43.56 28.60 29.77 30.02
OH⋅ ⋅ ⋅O 532.7 45.37 45.47 45.73 47.38
OH⋅ ⋅ ⋅N 536.5 5.63 — 3.05 —

Table 2: Surface atomic abundances of the PBZ films.

Sample C 1s (%) N 1s (%) O 1s (%)
First thermal treatment 63.2 1.5 35.4
First UV treatment 61.1 4.9 34.0
Second thermal treatment 50.1 2.9 47.0
Second UV treatment 54.4 6.2 39.4

BDs and also obviously exhibits pinning phenomena at the
contact line during deflation.This result is similar to the case
of scallion and garlic leaves [50], which exist rough surface
ofmicroscopic architecture and hydrophilic chemical defects.
Likewise, in the PBZ/silica nanocomposite films, both low
surface energy PBZ and silica caused roughness construct
the superhydrophobicity, and the hydroxyl groups in PBZ
become the hydrophilic defects which dominate the WCA
hysteresis.

6. Conclusions

A PBZ/silica nanocomposite coating, prepared using a sim-
ple two-step method, exhibits reversible transitions from
superhydrophobicity to superhydrophilicity and back again
upon sequential UV irradiation and thermal treatment. We
prepared a superhydrophobic PBZ film after introducing
silica nanoparticles possessing micro- and nanoscale binary
structure; it exhibited a large reversible contact angle of
approximately 140∘—seven times larger than that of the
corresponding flat PBZ film—that could be switched through
the application of sequential UV irradiation and thermal
treatment. Based on XPS analyses, the fraction of intermolec-
ularly hydrogen bonded O–H⋅ ⋅ ⋅O=C units increased after
UV exposure, resulting in a PBZ film with a hydrophilic
surface. The hydrophobicity of the surface returned after
heating this film at 200∘C, due to an increase in the degree of
intramolecular O–H⋅ ⋅ ⋅N hydrogen bonding in the PBZ film.
Furthermore, the ARCA experiments help us to figure out
the wetting model in PBZ/silica system which is a superhy-
drophobic surface with serious hysteresis.We suspect that the

materials exhibiting reversible WCAs reported herein might
have potential new applications in lithographic patterning
systems.
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